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Introduction to Bioinformatics for 
Computer Scientists

Lecture 8b
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Markov Chains - Outline

● We will mostly talk about discrete Markov chains as this is 
conceptually easier 

● Then, we will talk how to get from discrete Markov chains to 
continuous Markov chains 
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Markov Chains

● Stochastic processes with transition diagrams 

● Process, is written as {X0, X1, X2, …} 

where Xt is the state at time t

● Markov property: Xt+1 ONLY depends on Xt 

● Such processes are called Markov Chains
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An Example

The Markov flea example: flea hopping around at random on this diagram according 
to the probabilities shown

State transition 
probabilities
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An Example

The Markov flea example: flea hopping around at random on this diagram according 
to the probabilities shown

State space S = {1,2,3,4,5,6,7}

State transition 
probabilities
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An Example

●What is the probability of ever reaching state 7 from state 1?
●Starting from state 2, what is the expected time taken to reach state 4?
●Starting from state 2, what is the long-run proportion of time spent in
●state 3?
●Starting from state 1, what is the probability of being in state 2 at time t? 
Does the probability converge as t → ∞, and if so, to what?
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Definitions
● The Markov chain is the process X0, X1, X2, . . ..

● Definition: The state of a Markov chain at time t is the value of Xt

For example, if Xt = 6, we say the process is in state 6 at time t.

● Definition: The state space of a Markov chain, S, is the set of values that each Xt can take. 

For example, S = {1, 2, 3, 4, 5, 6, 7}.

Let S have size N (possibly infinite).

● Definition: A trajectory of a Markov chain is a particular set of values for X0, X1, X2, . . .

For example, if X0 = 1, X1 = 5, and X2 = 6, then the trajectory up to time t = 2 is 1, 5, 6.

More generally, if we refer to the trajectory s0, s1, s2, s3, . . . we mean that

X0 = s0, X1 = s1, X2 = s2, X3 = s3, . . .

‘Trajectory’ is just a word meaning ‘path'
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Markov Property

● Only the most recent point Xt affects what happens next, that is, 
Xt+1 only depends on Xt, but not on Xt-1, Xt-2, . . . 

● More formally: 

●
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Markov Property

● Only the most recent point Xt affects what happens next, that is, 
Xt+1 only depends on Xt, but not on Xt-1, Xt-2, . . . 

● More formally: 

● Explanation
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Definition
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Definition
Discrete states, e.g., A, C, G, T
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The Transition Matrix

Let us transform this into an equivalent transition matrix which is just another
way of describing this diagram.
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The Transition Matrix

Let us transform this into an equivalent transition matrix which is just another
Equivalent way of describing this diagram.
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The Transition Matrix

Let us transform this into an equivalent transition matrix which is just another
Equivalent way of describing this diagram.

States

Values of states

Transition
probabilities
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More formally
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More formally

The transition matrix is usually given the symbol P = (p
ij
)

In the transition matrix P:

the ROWS represent NOW, or FROM X
t

the COLUMNS represent NEXT, or TO X
t+1

Matrix entry i,j is the CONDITIONAL probability that NEXT = j, given that
NOW = i: the probability of going FROM state i TO state j.
p

ij
 = P(X

t+1
 = j | X

t
 = i).
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A Review of Probabilities

brown blonde Σ

light 5/40 15/40 20/40

dark 15/40 5/40 20/40

Σ 20/40 20/40 40/40

Hair color

Eye color

This is not a 
transition matrix!
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A Review of Probabilities

brown blonde Σ

light 5/40 15/40 20/40

dark 15/40 5/40 20/40

Σ 20/40 20/40 40/40

Hair color

Eye color

Joint probability: probability of observing both A and B: Pr(A,B)
For instance, Pr(brown, light) = 5/40 = 0.125
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A Review of Probabilities

brown blonde Σ

light 5/40 15/40 20/40

dark 15/40 5/40 20/40

Σ 20/40 20/40 40/40

Hair color

Eye color

Marginal Probability: unconditional probability of an observation Pr(A)
For instance, Pr(dark) = Pr(dark,brown) + Pr(dark,blonde) = 15/40 + 5/40 = 20/40 = 0.5

Marginalize over hair color
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A Review of Probabilities

brown blonde Σ

light 5/40 15/40 20/40

dark 15/40 5/40 20/40

Σ 20/40 20/40 40/40

Hair color

Eye color

Conditional Probability: The probability of observing A given that B has occurred: 
Pr(A|B) is the fraction of cases Pr(B) in which B occurs where A also occurs with Pr(AB)
Pr(A|B) = Pr(AB) / Pr(B)

For instance, Pr(blonde|light) = Pr(blonde,light) / Pr(light) = (15/40) / (20/40) = 0.75
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A Review of Probabilities

brown blonde Σ

light 5/40 15/40 20/40

dark 15/40 5/40 20/40

Σ 20/40 20/40 40/40

Hair color

Eye color

Statistical Independence: Two events A and B are independent
If their joint probability Pr(A,B) equals the product of their marginal probability Pr(A) Pr(B)
 
For instance, Pr(light,brown) ≠ Pr(light) Pr(brown), that is, the events are not independent!
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More formally

The transition matrix is usually given the symbol P = (p
ij
)

In the transition matrix P:

the ROWS represent NOW, or FROM X
t

the COLUMNS represent NEXT, or TO X
t+1

Matrix entry i,j is the CONDITIONAL probability that NEXT = j, given that
NOW = i: the probability of going FROM state i TO state j.
p

ij
 = P(X

t+1
 = j | X

t
 = i).
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Notes

1.The transition matrix P must list all possible states in the state 
space S.

2.P is a square N × N matrix, because Xt+1 and Xt both take values 
in the same state space S of size N.

3.The rows of P should each sum to 1:

The above simply states that Xt+1 must take one of the listed   
values.

4.The columns of P do in general NOT sum to 1.
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Notes

1.The transition matrix P must list all possible states in the state 
space S.

2.P is a square N × N matrix, because Xt+1 and Xt both take values 
in the same state space S of size N.

3.The rows of P should each sum to 1:

The above simply states that Xt+1 must take one of the listed   
values.

4.The columns of P do in general NOT sum to 1.

This is just another way of writing this
conditional probability.
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t-step Transition Probabilites

● Let {X0 , X1 , X2 , . . .} be a Markov chain with state space S = 
{1, 2, . . . , N }

● Recall that the elements of the transition matrix P are defined 
as

(P)ij = pij = P(X1= j | X0= i) = P(Xn+1= j | Xn= i) for any n.

● pij is the probability of making a transition FROM state i TO 
state j in a SINGLE step

● Question: what is the probability of making a transition from 
state i to state j over two steps? i.e. what is 

P(X2= j | X0= i) ?
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t-step transition probs

Any ideas? 
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t-step transition probs
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t-step transition probs

Sum of probabilities (OR!!!) over all
possible paths with 1 intermediate 
state k that will take us from i to j 
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t-step transition probs

The two step-transition probabilities, in fact, for any n are thus:
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All possible paths

OR OR

0

1

2

Sum over k

X
2
= j

X
1
 = k

X
0
= i

OR
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All possible paths

OR OR

0

1

2

Sum over k

X
2
= j

X
1
 = k

X
0
= i

OR

A

T

A C G T
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All possible paths

OR OR

0

1

2

Sum over k

X
2
= j

X
1
 = k

X
0
= i

OR

A

T

A C G T

We are still thinking 
In discrete steps here!



  
33

3-step transitions

● What is: P(X3 = j | X0 = i) ?
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3-step and t-step transitions

● What is: P(X3 = j | X0 = i) ?

→(P3)ij

● General case with t steps for any t and any n   
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Distribution of X
t

● Let {X0 , X1 , X2 , . . .} be a Markov chain with state space S = 
{1, 2, . . . , N }.

● Now each Xt is a random variable → it has a probability 
distribution.

● We can write down the probability distribution of Xt as vector 
with N elements.

● For example, consider X0 . Let π be a vector with N elements 
denoting the probability distribution of X0.
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The π vector

This means that our Markov process choses at random in which state (e.g., A, C, G, or T) it
starts with probability: P(start in state A) = π

A 

This is why those vectors are also called prior probabilities. 
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Probability of X
1

So, here we are asking what the probability of ending up in state j at X
1
 is, for 

starting in all possible states N at X
0
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All possible paths

OR OR0

1

Sum over i

X
1
= j

X
0
 = iOR

T

A C G T

0.2 0.3 0.4 0.1

p
A,T p

G,Tp
C,T

p
T,T

π vector
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All possible paths

0

1

Sum over i

X
1
= j

X
0
 = i

T

A C G T

0.2 0.3 0.4 0.1

p
A,T p

G,Tp
C,T

p
T,T

π vector

AND: π
A
p

A,T
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Probability Distribution of X
1

This shows that P(X
1
 = j) = πTP

j
 for all j .

The row vector πTP is therefore the probability distribution over all possible states 
for X

1 
, more formally:

X
0
  π∼ T

X
1
  π∼ TP
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Distribution of X
2

● What do you think? 
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Distribution of X
2

● What do you think? 

and in general: 
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Theorem

● Let {X0 , X1 , X2 , . . .} be a Markov chain with a N × N transition 
matrix P. 

● If the probability distribution of X0 is given by the 1 × N row 
vector πT, then the probability distribution of Xt is given by the 1 
× N row vector πTPt . That is,

X0  π∼ T  X⇒ t  π∼ TPt .
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Example – Trajectory probability
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Example – Trajectory probability
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Exercise

●Find the transition matrix P
●Find P(X

2
=3 | X

0
= 1) 

●Suppose that the process is equally likely to start in any state at time 0
→ Find the probability distribution of X

1

●Suppose that the process begins in state 1 at time 0 
→ Find the probability distribution of X

2

●Suppose that the process is equally likely to start in any state at time 0 
→ Find the probability of obtaining the trajectory (3, 2, 1, 1, 3).
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Class Structure

● The state space of a Markov chain can be partitioned into a set 
of non-overlapping communicating classes.

● States i and j are in the same communicating class if there is 
some way of getting from state i → j, AND there is some way of 
getting from state j → i.

● It needn’t be possible to get from i → j in a single step, but it 
must be possible over some number of steps to travel between 
them both ways.

● We write: i ↔ j 
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Definition

● Consider a Markov chain with state space S and transition matrix 
P, and consider states i, j in S. Then state i communicates with 
state j if:

● there exists some t such that (Pt )ij > 0, AND

● there exists some u such that (Pu)ji > 0.
● Mathematically, it is easy to show that the communicating relation 

↔ is an equivalence relation, which means that it partitions the 
state space S into non-overlapping equivalence classes.

● Definition: States i and j are in the same communicating class if   
   i ↔ j : i.e., if each state is accessible from the other.

● Every state is a member of exactly one communicating class.
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Example

● Find the communicating classes!
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Example

● Find the communicating classes!

{1, 2, 3} and {4, 5}

No way back!
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Properties of Communicating 
Classes

● Definition: A communicating class of states is closed if it is not 
possible to leave that class.

That is, the communicating class C is closed if pij = 0 whenever 
i in C and j not in C

● Example: In the transition diagram from the last slide: 

● Class {1, 2, 3} is not closed: it is possible to escape to class 
{4, 5} 

● Class {4, 5} is closed: it is not possible to escape.
● Definition: A state i is said to be absorbing if the set {i} is a 

closed class.

i
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Irreducibility

● Definition: A Markov chain or transition matrix P is said to be 
irreducible if i ↔ j for all i, j  S∈  . That is, the chain is 
irreducible if the state space S is a single communicating class.

● Do you know an example for an irreducible transition matrix P? 
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Irreducibility

● Definition: A Markov chain or transition matrix P is said to be 
irreducible if i ↔ j for all i, j  S∈  . That is, the chain is 
irreducible if the state space S is a single communicating class.

● Do you know an example for an irreducible transition matrix P? 

A

C

G

T
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Equilibrium

● We saw that if {X0, X1, X2, . . .} is a Markov chain with transition 
matrix P, then Xt  π∼ T  X⇒ t+1  π∼ TP

● Question: is there any distribution π at some time t such that 
πTP = πT ?

● If πTP = πT, then

Xt  π∼ T     X⇒ t+1  π∼ TP = πT

 ⇒ Xt+2  π∼ TP = πT

 ⇒ Xt+3  π∼ TP = πT

 ⇒ . . .
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Equilibrium

● We saw that if {X0, X1, X2, . . .} is a Markov chain with transition matrix P, then 
Xt  π∼ T  X⇒ t+1  π∼ TP

● Question: is there any distribution π at some time t such that πTP = πT ?

● If πTP = πT, then

Xt  π∼ T     X⇒ t+1  π∼ TP = πT

 ⇒ Xt+2  π∼ TP = πT

 ⇒ Xt+3  π∼ TP = πT

 ⇒ . . .
● In other words, if πTP = πT AND Xt  π∼ T, then

Xt  X∼ t+1  X∼ t+2  X∼ t+3  . . .∼

● Thus, once a Markov chain has reached a distribution πT such that πTP = πT,

it will stay there
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Equilibrium

● If πTP = πT, we say that the distribution πT is an equilibrium 
distribution.

● Equilibrium means there will be no further change in the 
distribution of Xt as we wander through the Markov chain.

● Note: Equilibrium does not mean that the actual value of Xt+1 
equals the value of Xt

● It means that the distribution of Xt+1 is the same as the 
distribution of Xt, e.g.

P(Xt+1 = 1) = P(Xt = 1) = π1;

P(Xt+1 = 2) = P(Xt = 2) = π2, etc.
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Example

Suppose we start at time t=0 with
X

0
  (¼, ¼, ¼, ¼) : so the chain is equally∼

likely to start in any of the four states.
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First Steps

Probability of being in state 1, 2, 3, or 4
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Later Steps

We have reached equilibrium, the chain has forgotten about the initial 
Probability distribution of (¼, ¼, ¼, ¼).

Note: There are several other names for an equilibrium distribution. If πT

is an equilibrium distribution, it is also called:
● invariant: it doesn’t change πT

• stationary: the chain ‘stops’ here



  
60

Calculating the Equilibrium 
Distribution

● For the example, we can explicitly calculate the equilibrium 
distribution by solving  πTP = πT, under the restriction that: 

1. The sum over all entries πi in vector πT is 1

2. All πi are larger or equal to 0

● I will spare you the details, the equilibrium frequencies for our 
example are: (0.28, 0.30, 0.04, 0.38)
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Convergence to Equilibrium

● What is happening here is that each row of the transition matrix 
Pt converges to the equilibrium distribution (0.28, 0.30, 0.04, 
0.38) as t → ∞ 

All rows become identical. 
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Impact of Starting Points
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Impact of Starting Points

Initial behavior is different!
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Continuous Time Models

Probability of ending in state j when starting in state i over time (branch length) ν 
where i = j for the blue curve and i ≠ j for the red one. 

Convergence to stationary 
distribution of the Jukes Cantor 
Model: (0.25,0.25,0.25, 0.25)

Time steps t
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Is there always convergence to an 
equilibrium distribution? 

1.0

1.0
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Is there always convergence to an 
equilibrium distribution? 

1.0

1.0

In this example, Pt never converges to a matrix with both rows identical as t becomes large. 
The chain never ‘forgets’ its starting conditions as t → ∞ . 
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Is there always convergence to an 
equilibrium distribution? 

1.0

1.0

In this example, Pt never converges to a matrix with both rows identical as t becomes large. 
The chain never ‘forgets’ its starting conditions as t → ∞ . 

The chain does have an equilibrium distribution πT = (½, ½). 
However, the chain does not converge to this distribution as
t→ ∞. 
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Convergence

● If a Markov chain is irreducible and aperiodic, and if an 
equilibrium distribution πT exists, then the chain converges to 
this distribution as t → ∞, regardless of the initial starting states.

● Remember: irreducible means that the state space is a single 
communicating class! 

irreducible non-irreducible
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Periodicity

● In general, the chain can return from state i back to state i again 
in t steps if (Pt)ii > 0. This leads to the following definition:

● Definition: The period d(i) of a state i is

d(i) = gcd{t : (Pt)ii> 0},

the greatest common divisor of the times at which return is 
possible.

● Definition: The state i is said to be periodic if d(i) > 1.

For a periodic state i, (Pt)ii = 0 if t is not a multiple of d(i).

● Definition: The state i is said to be aperiodic if d(i) = 1 .
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Example

d(0) = ?
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Example

d(0) = gcd{2, 4, 6, …} = 2

The chain is irreducible!
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Result

● If a Markov chain is irreducible and has one aperiodic state,

then all states are aperiodic.

● Theorem: Let {X0, X1 , . . .} be an irreducible and aperiodic 
Markov chain with transition matrix P . Suppose that there exists 
an equilibrium distribution πT . Then, from any starting state i, 
and for any end state j,

P(Xt = j | X0 = i) → πj as t → ∞.

In particular, 

(Pt)ij → πj as t → ∞, for all i and j, 

so Pt converges to a matrix with all rows identical and equal to  
πT 
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Why? 

● The stationary distribution gives information about the stability 
of a random process.
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Continuous Time Markov Chains 
(CTMC)

● Tranistions/switching between states at random times and not 
at clock ticks like in a CPU, for example! 

→ no periodic oscillation, concept of waiting times!

0 1

t
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Continuous Time Markov Chains

● Tranistions/switching between states at random times and not 
at clock ticks like in a CPU, for example! 

→ no periodic oscillation, concept of waiting times!

0 1

tUnderstand what happens as we go toward dt
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Use Calculus

● Now write the transition probability matrix P as a function of 
time P(t)

t

P(0)
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Use Calculus

● Now write the transition probability matrix P as a function of 
time P(t)

t

P(0)P(dt)
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Use Calculus

● Now write the transition probability matrix P as a function of 
time P(t)

t
P(0)P(dt) P(2dt)

P(t) is a function that returns a matrix! However, most standard maths on scalar 
Functions can be applied. 
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Use Calculus

● Now write the transition probability matrix P as a function of 
time P(t)

t
P(0)P(dt) P(2dt)

P(t) is a function that returns a matrix! However, most standard maths on scalar 
Functions can be applied.

Derivative: dP(t) / dt  = lim
δt→0

 [P(t + δt) – P(t)] / δt

Here only dt is a scalar value, everything else is a matrix!

 

P(0)
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Use Calculus

● Now write the transition probability matrix P as a function of 
time P(t)

t
P(0)P(dt) P(2dt)

P(t) is a function that returns a matrix! However, most standard maths on scalar 
Functions can be applied.

Derivative: dP(t) / dt  = lim
δt→0

 [P(t + δt) – P(t)] / δt

Here only dt is a scalar value, everything else is a matrix!

The derivative of a matrix is obtained by individually differentiating all of its entries, 
same for the limit.

 

P(0)
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Calculating the limit

● Calculating limδt→0 [P(t + δt) – P(t)] / δt requires solving a differential 
equation. 

● If we can solve this, then we can calculate P(t)

● Remember, for discrete chains:

This is also known as the Chapman-Kolmogorov relationship and 
can be written differently as 

Pn+m = PnPm 

for any discrete number of steps n and m. 
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Calculating the limit

● Calculating limδt→0 [P(t + δt) – P(t)] / δt requires solving a differential 
equation. 

● If we can solve this, then we can calculate P(t)

● Remember, for discrete chains:

This is also known as the Chapman-Kolmogorov relationship and can 
be written differently as 

Pn+m = PnPm 

for any discrete number of steps n and m. Thus for continuous time we 
want: P(t+h) = P(t)P(h) 
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Calculating the limit

limδt→0 [P(t + δt) – P(t)] / δt

limδt→0 [P(t)P(δt) – P(t)] / δt

limδt→0 [P(t)(P(δt) – I)] / δt

Identity matrix, analogous to 1 in the scalar case
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Calculating the limit

limδt→0 [P(t + δt) – P(t)] / δt

limδt→0 [P(t)P(δt) – P(t)] / δt

limδt→0 [P(t)(P(δt) – I)] / δt

The limit doesn't depend on P(t)!

P(t) limδt→0 (P(δt) – I) / δt
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Calculating the limit

limδt→0 [P(t + δt) – P(t)] / δt

limδt→0 [P(t)P(δt) – P(t)] / δt

limδt→0 [P(t)(P(δt) – I)] / δt

The limit doesn't depend on P(t)!

P(t) limδt→0 (P(δt) – I) / δt
This is the famous Q matrix
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Calculating the limit

limδt→0 [P(t + δt) – P(t)] / δt

limδt→0 [P(t)P(δt) – P(t)] / δt

limδt→0 [P(t)(P(δt) – I)] / δt

The limit doesn't depend on P(t)!

P(t) limδt→0 (P(δt) – I) / δt
This is the famous Q matrix

The values of Q can be anything, but rows must sum to 0. Remember that rows of P 
must sum to 1. 
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What we have so far

dP(t)/dt = P(t)Q

Q is also called the jump rate matrix, or instantaneous 
transition matrix 

Now, imagine that P(t) is a scalar function and Q just some 
scalar constant: 

P(t) = exp(Qt)

the same holds for matrices.
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What we have so far

dP(t)/dt = P(t)Q

Q is also called the jump rate matrix, or instantaneous 
transition matrix 

Now, imagine that P(t) is a scalar function and Q just some 
scalar constant: 

P(t) = exp(Qt)

the same holds for matrices.

However calculating a matrix exponential is not trivial, it's not 
just taking the exponential of each of its elements! 

exp(Qt) = I + Qt + 1/2! Q2t2 + 1/3! Q3t3 + …



  
89

P(t)=eQt

● There is no general solution to analytically calculate this matrix 
exponential, it depends on Q.

● In some cases we can come up with an analytical equation, like 
for the Jukes Cantor model

● For the GTR model we already need to use creepy numerical 
methods (Eigenvector/Eigenvalue) decomposition, we might 
see that later 

● For non-reversible models it gets even more nasty 
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Equilibrium Distribution

● Assume there exists a row vector πT such that πTQ = 0 

→ πT is the equilibrium distribution


