Introduction to Bioinformatics for
Computer Scientists

Lecture 9b



Likelihood

e Given:
« MSA
* Tree topology with branch lengths

e Model

« We can calculate P

,(b) for a branch length (or
time) b



Likelihood

* L(T|D) = P(DIT)

Probability that the tree generated
the data (generating process)




Likelihood

* L(T|D) = P(DIT)

Likelihood of the tree, given the
data




Likelihood

* L(T|D) = P(DIT)
Likelihood: 10 coin flips — 10 heads
What's the likelihood that the coin is fair?

Probability: Probability of landing heads up
10 times
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~ Alignment site i

D) =N PEIT)

AN
\\
AN
AN

~ What s problematic about this term?



Likelihood

* L(T|D) = P(DIT)
- L(T|D) = N P(s||T)
» log(L(T|D)) = 2 log(P(sj|T))




Likelihood

_(T|D) = P(D|T)
(T|D) = N P(s|T)
og(L(T[D)) = Z log(P(sT))

!

This is the model
1. Tree topology
2. Branch lengths
3. Model of nucleotide substitution
— generally lumped into parameter vector ©: L(©|D)
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Likelihood

_(T|D) = P(DI|T)

(T|D) = N P(s|T)

og(L(T|D)) = 2 log(P(s[T))

N

This is the model

1. Tree topology

2. Branch lengths

3. Model of nucleotide substitution
— generally lumped into parameter vector ©: L(©|D)

How do we compute this?
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Likelihood of a Tree

* \We assume that sites evolve independently

Likelihood of site i

- >

MSA length n



Likelihood of a Tree

* \We assume that sites evolve independently

Likelihood of site i

W b2 b4
b
3
b1 b

- >

MSA length n




Likelihood of a Tree
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Likelihood of site i
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Likelihood of a Tree

* \We assume that sites evolve independently

Likelihood of site i

b2 b4
b Model M
3

- >

MSA length n

« Overall likelihood: L := 1L,



Likelihood of a Tree

* \We assume that sites evolve independently

Likelihood of site i

b , b4
b Model M
3
b ) P,

- >

MSA length n

« Overall likelihood: L := 1L,
o P,j(Qi,\jin {A C, G, T}

Branch length/time
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Likelihood of a Tree

» \We assume that sites evolve independently

Likelihood \of site |

- >
MSA length n
« Overall likelihood: L := 1L,
« Pt)ijin{A, C, G, T}
— Probability of being in state j after time t
-~ We assume that P,(t) is a Markov Process

Model M
0



17

Likelihood of a Tree

» WWe assume that sites evolve independently

Likelihood \of site |

- >
MSA length n
 Overall likelihood: L ;= [1L,
« Pyt)ijin{A C, G, T}
— Probability of being in state j after time t
-~ We assume that P,(t) is a Markov Process

« Equilibrium frequency vector n = (n,, ¢, N¢, M)

Model M
0
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Likelihood of a Tree

» We assume that sites evolve independently

Likelihood \of site |

Model M
0

- >

MSA length n

Overall likelihood: L := 1L,

« Pt)ijin{A, C, G, T}

— Probability of being in state j after time t

—~ We assume that P(t) is a Markov Process

Equilibrium frequency vector n = (n,, n¢, N, ;)

Time reversibility: m,Pyt) = n.P,(t)
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What's the likelihood of this tree?

o
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What's the likelihood of this tree?
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What's the likelihood of this tree?




22

What's the likelihood of this tree?

Assume the inner states are given!
What is the likelihood of the tree if we
Interpret it as Markov diagram?
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What's the likelihood of this tree?

Assume the inner states are given!
What is the likelihood of the tree if we
Interpret it as Markov diagram?

L=nP b)P,bm)P,b)
Pu(0)Pr(b) P (b))




What's the likelihood of this tree?

Assume the inner states are given!
What is the likelihood of the tree if we
Interpret it as Markov diagram?

Li = nA PAA(bl) PAA(bZ) PAA(bS)
P, (b)P,(b) P, (b)

We are multiplying here, because to
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What's the likelihood of this tree?

Assume the inner states are given!
What is the likelihood of the tree if we
Interpret it as Markov diagram?

A L=nP (b)P, (b)P, (b)

A AA

Pu(b )P (by) Pro(by)

We are multiplying here, because to
observe the data at the tips, given the
tree, the initial state must be A n,

AND then this happened
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What's the likelihood of this tree?

Assume the inner states are given!
What is the likelihood of the tree if we
Interpret it as Markov diagram?

Li = nA PAA(bl) PAA(bZ) PAA(bS)
Pu(0)Pr(b) P (b))

We are multiplying here, because to
observe the data at the tips, given the
tree, the initial state must be A n,

AND then this happened
AND this
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What's the likelihood of this tree?

Assume the inner states are given!
What is the likelihood of the tree if we
Interpret it as Markov diagram?

Li = nA PAA(bl) PAA(bZ) PAA(bS)
Pu(0)Pr(b) P (b))

We are multiplying here, because to
observe the data at the tips, given the
tree, the initial state must be A n,

AND then this happened
AND this

\ AND this
G
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What's the likelihood of this tree?

Assume the inner states are given!
What is the likelihood of the tree if we
Interpret it as Markov diagram?

Li = nA PAA(bl) PAA(bZ) PAA(bS)
Pu(0)Pr(b) P (b))

We are multiplying here, because to
observe the data at the tips, given the
tree, the initial state must be A n,

AND then this happened
AND this
AND this
AND this

28



29

What's the likelihood of this tree?

Assume the inner states are given!
What is the likelihood of the tree if we
Interpret it as Markov diagram?

A L=nP (b)P, (b)P, (b)

A AA

Pu(b )P (by) Pro(by)

We are multiplying here, because to
observe the data at the tips, given the
tree, the initial state must be A n,

AND then this happened
AND this
AND this
AND this
AND this
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What's the likelihood of this tree?

Assume the inner states are given!
What is the likelihood of the tree if we
Interpret it as Markov diagram?

A L=nP (b)P, (b)P, (b)

A AA

Pu(b )P (by) Pro(by)

We are multiplying here, because to
observe the data at the tips, given the
tree, the initial state must be A n,

AND then this happened

AND this
6 AND this

AND this

AND this

A A G AND this
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What's the likelihood of this tree?

11

However, we don't know the inner states :-(
So the question is: What are the possible
evolutionary histories that could have given
rise (generated) to the data we observe at

the tips?
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What's the likelihood of this tree?

It could be this
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What's the likelihood of this tree?

It could be this
OR this




34

What's the likelihood of this tree?

It could be this
OR this
OR this
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What's the likelihood of this tree?

It could be this
OR this
OR this
OR this
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What's the likelihood of this tree?

It could be this
OR this
OR this
OR this
OR this
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What's the likelihood of this tree?

It could be this
OR this
OR this
OR this
OR this
OR this
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What's the likelihood of this tree?

It could be this
OR this
OR this
OR this
OR this
OR this
OR this
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What's the likelihood of this tree?

It could be this
OR this
OR this
OR this
OR this
OR this
OR this
OR this
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What's the likelihood of this tree?

It could be this
OR this
OR this
OR this
OR this
OR this
OR this
OR this

OR this
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What's the likelihood of this tree?

So the likelihood of the tree is the sum (OR!) over the likelihoods of all possible
assignments of A, C, G, and T (all possible evolutionary histories)
to the inner nodes /1, 12, I3 of the tree.




42

What's the likelihood of this tree?

So the likelihood of the tree is the sum (OR!) over the likelihoods of all possible
assignments of A, C, G, and T (all possible evolutionary histories)
to the inner nodes /1, 12, I3 of the tree.

There are 4 x 4 x 4 possible assignments in our example
— this sounds very compute-intensive :-(

11
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The Felsenstein Pruning Algorithm

Post order traversal
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Felsenstein Pruning

conditional likelihood vectors

b6
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Felsenstein Pruning

P(A)
P(C)
P(G)
P(T)

P (bl) P(A)
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Felsenstein Pruning

P(A)
P(C)
P(G)
P(T)

P (b1) P(A) OR
P (bl) P(C)

b6



a7

Felsenstein Pruning

P(A)
P(C)
P(G)
P(T)

P (b1) P(A) OR
P (bl) P(C) OR
P.(bl) P(G)

b6
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Felsenstein Pruning

P(A)
P(C)
P(G)
P(T)

P (b1) P(A) OR
P (bl) P(C) OR
P,.(b1) P(G)
P _(bl) P(T

b4

b6
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Felsenstein Pruning

AND!

P(A)
P(C)
P(G)
P(T)

P (b4) P(A)OR

P (b4) P(C) OR
ba  P..(bd) P(G) OR
P _(b4) P(T)

P(A)
P(C)

P(G)
P(M)

b6



Felsenstein Pruning

AND (left branch/right branch)

|

- T
L) = (Y Pasi)LS () ( D Pasb)LY ()
S=4A

S=4
LA(K) hO) -
P(b_i) 4G P(b_J)
ACGT ACGT
A ¢
c b i . G
T — b ] T
_ P(A) oA
LA(j P(C) .
0 5 3 L)

50 4 Position ¢



Felsenstein Pruning

OR (along left branch)

d % )
LY ()= (Y Pas(b Z s(b)LY (0))

S=A
LK) 0 -
P(b_i) 4G P(b_J)
ACGT ACGT
A A
C
G b | . G
T b ] T
P(A)
LA(] P(C) e .
0 5 3 L)

51 4 Position ¢



Felsenstein Pruning

OR (along right branch)

T T
LY@ = (3 Pas®)L (@) (X Pas®)LE ()
S=4 S=4
LK) 0 -
P(b_i) o Pb)
ACGT ACGT
A A
C C
: b b ¢
P(A)
LA 0 o |
( ) Eg%) EE%) L/\(J)

52 4 Position ¢



53

Felsenstein Pruning

P(A)
P(C)
P(G)
P(T)
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Felsenstein Pruning

Likelihood at the root: L=n, P(A) + n. P(C) + n. P(G) + n_

P(A)
P(C)
P(G)




Why Is time-reversibility important?

T ¥ oA
L= 7s, Y Pss,(b1)Ls > Ps,s;(ba)Lg)
Si=A SgZA 55:A

Lss




Why Is time-reversibility important?

T T
L=0'=3 n5, 3 Pos,(bi +2)LE S Poys, (bs — 2)L)
Si=A Sz3=A Ss=A




Why Is time-reversibility important?

T T
L=L'=Y s ¥ Pssbi+2)LE S Py, (bs— )L
Ss=A S3=A Ss=A




Why Is time-reversibility important?

This observation can be applied
recursively to the tree

—

It does not matter at all where we
place the root!

T
Z PS435 (b4 o :E)L

Ss=A

(5)
Ss



What's in the black box P,-,-(t)?

Instantaneous rate matrix R!




What's in the black box P,-,-(t)?

What about the probabilities of staying in the current state?
— they are given by the properties of continuous Markov chains!
eg, A= -(A_+A _+A_)rowsinthe R matrix need to sum to 0

)\AA A
cC
A < L Q

A
?\ }\CG
AT }\CT
}\AG
y




What's in the black box P,-,-(t)?

A C G T
A A oA A
C }\ }\CT
G }\GT
Symmetric
T

- v



What's in the black box P,-,-(t)?

Diagonal values are
given by the off-diagonal
values (R matrix property)
AN =-(AN +A +A)

AA AC AG AT

.

/

A C G T
<

A /{ * }\AC }\AG )\AT\
C *

CG CT
G * GT

Symmetric

T

- v



What's in the black box P,-,-(t)?

A C G T
A / * }\AC }\AG )\AT\
C *
CG CT
G * GT
Symmetric
T

- v

Equilibrium frequency vector n= (n,, n, n, n,) where n, + n-+ .+ n;=1



The Jukes-Cantor model

A C G T
A AN A
C A A
G LA
T /

n=(1/4, 1/4, 1/4, 1/4)



- O O >

Felsenstein 81

AN A
A A
A

*




Kimura 2-parameter model 1980

A C G T
A N A
C A
G ¢
T J

n=(1/4, 1/4, 1/4, 1/4)



HKY85

£ 1,



- O O >

GTR 1986

C G T
B v\

0 3

* ¢
*

m, =1,



- O O >

GTR 1986

.zl

Note that these are
relative rates, their
Values only matter
relative to each other,
so we can set (:=1.0
by default



- O O >

GTR 1986

.zl

Note that these are
relative rates, their
values only matter
relative to each other,
so we can set (:=1.0
by default. Although the
GTR model has 6 rates,
it only has 5 free
parameters!



Model Hierarchy

unequal frequencieés/

Jukes Cantor

Felsenstein81

HKY85

GTR

more parameters

Kimura 2 parameter




- O O >

GTR 1986

This is a rate matrix,
time reversibility would

Require nr_=nr.
iij J i



- O O >

GTR 1986

.zl

This is a rate matrix,
time reversibility would

Require nr_=nr.
iij J i

Solution: introduce a
Q matrix Q :=diag(n) R

‘. ~
I-IC
I-IG
\_ by



- O O >

GTR 1986

This is a rate matrix,
time reversibility would

Require nr_=nr.
iij J i

C G T Solution: introduce a
3 v \ Q matrix Q :=diag(n) R

* o) £ /

. 10 . ™
I-IA
* / I'IC
n
G
M
e 1%
1. #Tl

Then, nr. = nr_holds
I j J i



So how do we compute P(t) from Q?

* As we have seen in the lecture on Markov chains:
P(t) =eet=1+ Qt + 1/2! (Qt)2 + 1/3! (Qt)3+ ...
 Dbut this is unfortunately a matrix eponential :-(

| will spare you the details, but in general, e.g., for GTR we
need to apply an egienvector/eigenvalue decomposition of Q to
calculate:

P(t) = U exp(diag(A)t) U2

Matrix and inverse matrix of eigenvectors of Q



So how do we compute P(t) from Q?

* As we have seen in the lecture on Markov chains:
P(t) =eet=1+ Qt + 1/2! (Qt)2 + 1/3! (Qt)3+ ...
* Dbut this is unfortunately a matrix exponential :-(

| will spare you the details, but in general, e.g., for GTR we

need to apply an egienvector/eigenvalue decomposition of Q to
calculate:

P(t) = U exp(diag(A)t) U2

Diagonal matrix of eigenvalues of Q, here the exponential function exp() is invoked
on scalar values!



Likelihood Calculations

So far, we have only seen how to calculate a likelihood on a

e given, fixed tree topology
« with given fixed branch lengths
« and given, fixed remaining model parameters

Computing the maximum likelihood score, is much more complicated as it
requires functions for optimizing continuous parameters and functions for
searching the discrete space of trees !



