Introduction to Bioinformatics for Computer Scientists

Lecture 9b

Likelihood

- Given:
- MSA
- Tree topology with branch lengths
- Model
- We can calculate $P_{x \rightarrow 2}(b)$ for a branch length (or time) b

Likelihood

- $\mathrm{L}(\mathrm{T} \mid \mathrm{D})=\mathrm{P}(\mathrm{D} \mid \mathrm{T})$

Probability that the tree generated the data (generating process)

Likelihood

- $\mathrm{L}(\mathrm{T} \mid \mathrm{D})=\mathrm{P}(\mathrm{D} \mid \mathrm{T})$

Likelihood of the tree, given the data

Likelihood

- $\mathrm{L}(\mathrm{T} \mid \mathrm{D})=\mathrm{P}(\mathrm{D} \mid \mathrm{T})$

Likelihood: 10 coin flips $\rightarrow 10$ heads What's the likelihood that the coin is fair?

Probability: Probability of landing heads up
10 times

Likelihood

- $L(T \mid D)=P(D \mid T)$
- $L(T \mid D)=\Pi P\left(s_{i} \mid T\right)$

Alignment site i

Likelihood

- $\mathrm{L}(\mathrm{T} \mid \mathrm{D})=\mathrm{P}(\mathrm{D} \mid \mathrm{T})$
- $L(T \mid D)=\Pi P\left(s_{i} \mid T\right)$

Alignment site i

What is problematic about this term?

Likelihood

- $L(T \mid D)=P(D \mid T)$
- $L(T \mid D)=\Pi P\left(s_{i} \mid T\right)$
- $\log (\mathrm{L}(\mathrm{T} \mid \mathrm{D}))=\Sigma \log \left(\mathrm{P}\left(\mathrm{s}_{\mathrm{i}} \mid \mathrm{T}\right)\right)$

Likelihood

- $L(T \mid D)=P(D \mid T)$
- $L(T \mid D)=\Pi P\left(s_{i} \mid T\right)$
- $\log (\mathrm{L}(\mathrm{T} \mid \mathrm{D}))=\Sigma \log \left(\mathrm{P}\left(\mathrm{s}_{\mathrm{i}} \mid \mathrm{T}\right)\right)$

This is the model

1. Tree topology
2. Branch lengths
3. Model of nucleotide substitution
\rightarrow generally lumped into parameter vector ©: L(O|D)

Likelihood

- $L(T \mid D)=P(D \mid T)$
- $L(T \mid D)=\Pi P\left(s_{i} \mid T\right)$
- $\log (\mathrm{L}(\mathrm{T} \mid \mathrm{D}))=\Sigma \log \left(\underline{\mathrm{P}\left(\mathrm{s}_{\mathrm{i}} \mid \mathrm{T}\right)}\right)$

This is the model
How do we compute this?

1. Tree topology
2. Branch lengths
3. Model of nucleotide substitution
\rightarrow generally lumped into parameter vector ©: L(O|D)

Likelihood of a Tree

- We assume that sites evolve independently

Likelihood of site i

MSA length n

Likelihood of a Tree

- We assume that sites evolve independently

Likelihood of site i

MSA length n

Likelihood of a Tree

- We assume that sites evolve independently

Likelihood of site i

Model M
$P_{i j}(t)$

Likelihood of a Tree

- We assume that sites evolve independently

Likelihood of site i

Model M
$P_{i j}(t)$

MSA length n

- Overall likelihood: $L:=\Pi L_{i}$

Likelihood of a Tree

- We assume that sites evolve independently

Likelihood of site i

Model M
$P_{i j}(t)$

MSA length n

- Overall likelihood: $L:=\Pi L_{i}$
- $P_{i j}(t) i, j$ in $\{A, C, G, T\}$

Branch length/time

Likelihood of a Tree

- We assume that sites evolve independently

Likelihood of site i

Model M
$P_{i j}(t)$

- Overall likelihood: $L:=\Pi L_{i}$
- $P_{i j}(t) i, j$ in $\{A, C, G, T\}$
\rightarrow Probability of being in state j after time t
\rightarrow We assume that $P_{i j}(t)$ is a Markov Process

Likelihood of a Tree

- We assume that sites evolve independently

Likelihood of site i

Model M
$P_{i j}(t)$

Likelihood of a Tree

- We assume that sites evolve independently

Likelihood of site i

Model M
$P_{i j}(t)$

- Overall likelihood: $L:=\Pi L_{i}$
- $P_{i j}(t) i, j$ in $\{A, C, G, T\}$
\rightarrow Probability of being in state j after time t
\rightarrow We assume that $P_{i j}(t)$ is a Markov Process
- Equilibrium frequency vector $\Pi_{=}\left(\Pi_{A}, \Pi_{C}, \Pi_{G}, \Pi_{T}\right)$
- Time reversibility: $\pi_{i} P_{i j}(t)=\pi_{j} P_{i j}(t)$

What's the likelihood of this tree?

What's the likelihood of this tree?

What's the likelihood of this tree?

What's the likelihood of this tree?

Assume the inner states are given! What is the likelihood of the tree if we Interpret it as Markov diagram?

What's the likelihood of this tree?

Assume the inner states are given! What is the likelihood of the tree if we Interpret it as Markov diagram?

What's the likelihood of this tree?

Assume the inner states are given! What is the likelihood of the tree if we Interpret it as Markov diagram?

What's the likelihood of this tree?

Assume the inner states are given! What is the likelihood of the tree if we Interpret it as Markov diagram?

What's the likelihood of this tree?

Assume the inner states are given! What is the likelihood of the tree if we Interpret it as Markov diagram?

What's the likelihood of this tree?

Assume the inner states are given! What is the likelihood of the tree if we Interpret it as Markov diagram?

What's the likelihood of this tree?

Assume the inner states are given! What is the likelihood of the tree if we Interpret it as Markov diagram?

What's the likelihood of this tree?

Assume the inner states are given! What is the likelihood of the tree if we Interpret it as Markov diagram?

What's the likelihood of this tree?

Assume the inner states are given! What is the likelihood of the tree if we Interpret it as Markov diagram?

What's the likelihood of this tree?

However, we don't know the inner states :-(So the question is: What are the possible evolutionary histories that could have given rise (generated) to the data we observe at

What's the likelihood of this tree?

It could be this

What's the likelihood of this tree?

It could be this
OR this

What's the likelihood of this tree?

It could be this
OR this
OR this

What's the likelihood of this tree?

What's the likelihood of this tree?

So the likelihood of the tree is the sum (OR!) over the likelihoods of all possible assignments of A, C, G, and T (all possible evolutionary histories) to the inner nodes $I 1, I 2, I 3$ of the tree.

What's the likelihood of this tree?

So the likelihood of the tree is the sum (OR!) over the likelihoods of all possible assignments of A, C, G, and T (all possible evolutionary histories) to the inner nodes $I 1, I 2, I 3$ of the tree.

There are $4 \times 4 \times 4$ possible assignments in our example
\rightarrow this sounds very compute-intensive :-(

The Felsenstein Pruning Algorithm

Post order traversal

Felsenstein Pruning

Felsenstein Pruning

AND (left branch/right branch)

$$
\vec{L}_{A}^{(k)}(c)=\left(\sum_{S=A}^{T} P_{A S}\left(b_{i}\right) \vec{L}_{S}^{(i)}(c)\right)^{\prime}\left(\sum_{S=A}^{T} P_{A S}\left(b_{j}\right) \vec{L}_{S}^{(j)}(c)\right)
$$

Felsenstein Pruning

OR (along left branch)

$$
\vec{L}_{A}^{(k)}(c)=\left(\sum_{S=A}^{T} P_{A S}\left(b_{i}\right) \vec{L}_{S}^{(i)}(c)\right)\left(\sum_{S=A}^{T} P_{A S}\left(b_{j}\right) \vec{L}_{S}^{(j)}(c)\right)
$$

Felsenstein Pruning

OR (along right branch)

$$
\vec{L}_{A}^{(k)}(c)=\left(\sum_{S=A}^{T} P_{A S}\left(b_{i}\right) \vec{L}_{S}^{(i)}(c)\right)\left(\sum_{S=A}^{T} P_{A S}\left(b_{j}\right) \vec{L}_{S}^{(j)}(c)\right)
$$

Felsenstein Pruning

Felsenstein Pruning

Likelihood at the root: $L_{i}=\pi_{A} P(A)+\pi_{C} P(C)+\pi_{G} P(G)+\pi_{T} P(T)$

Why is time-reversibility important?

$$
L=\sum_{S_{4}=A}^{T} \pi_{S_{4}} \sum_{S_{3}=A}^{T} P_{S_{4} S_{3}}\left(b_{1}\right) L_{S_{3}}^{(3)} \sum_{S_{5}=A}^{T} P_{S_{4} S_{5}}\left(b_{4}\right) L_{S_{5}}^{(5)}
$$

Why is time-reversibility important?

$$
L=L^{\prime}=\sum_{S_{4}=A}^{T} \pi_{S_{4}} \sum_{S_{3}=A}^{T} P_{S_{4} S_{3}}\left(b_{1}+x\right) L_{S_{3}}^{(3)} \sum_{S_{5}=A}^{T} P_{S_{4} S_{5}}\left(b_{4}-x\right) L_{S_{5}}^{(5)}
$$

Why is time-reversibility important?

$$
L=L^{\prime}=\sum_{S_{4}=A}^{T} \pi_{S_{4}} \sum_{S_{3}=A}^{T} P_{S_{4} S_{3}}\left(b_{1}+x\right) L_{S_{3}}^{(3)} \sum_{S_{5}=A}^{T} P_{S_{4} S_{5}}\left(b_{4}-x\right) L_{S_{5}}^{(5)}
$$

$$
b_{1^{\prime}}:=0 \quad b_{4}^{\prime}:=b_{1}+b_{4} \quad L_{S 5}
$$

Why is time-reversibility important?

What's in the black box $P_{i j}(t) ?$

Instantaneous rate matrix R !

What's in the black box $P_{i j}(t)$?

What about the probabilities of staying in the current state?
\rightarrow they are given by the properties of continuous Markov chains! e.g., $\lambda_{A A}=-\left(\lambda_{A C}+\lambda_{A G}+\lambda_{A T}\right)$ rows in the R matrix need to sum to 0

What's in the black box $P_{i j}(t) ?$

What's in the black box $P_{i j}(t) ?$

Diagonal values are given by the off-diagonal
values (R matrix property)
$\lambda_{A A}=-\left(\lambda_{A C}+\lambda_{A G}+\lambda_{A T}\right)$

What's in the black box $P_{i j}(t) ?$

Equilibrium frequency vector $\pi=\left(\Pi_{A}, \Pi_{C} \Pi_{G}, \Pi_{T}\right)$ where $\Pi_{A}+\Pi_{C}+\Pi_{G}+\Pi_{T}=1$

The Jukes-Cantor model

$$
\Pi=(1 / 4,1 / 4,1 / 4,1 / 4)
$$

Felsenstein 81

$\left.\left.\begin{array}{c}A \\ C \\ G \\ T\end{array}\right] \begin{array}{cccc}A & C & G & T \\ & \lambda & \lambda & \lambda \\ & * & \lambda & \lambda \\ & & * & \lambda \\ & & & *\end{array}\right)$

$$
\Pi_{i} \neq \Pi_{j}
$$

Kimura 2-parameter model 1980

$$
\Pi=(1 / 4,1 / 4,1 / 4,1 / 4)
$$

HKY85

$$
\Pi_{i} \neq \Pi_{j}
$$

GTR 1986

	A	C	G	T
A	*	a	β	V
C		*	δ	ε
G			*	ζ
T				*

$$
\Pi_{i} \neq \Pi_{j}
$$

GTR 1986

Note that these are relative rates, their Values only matter relative to each other, so we can set $\zeta:=1.0$ by default

$$
\Pi_{i} \neq \Pi_{j}
$$

GTR 1986

Note that these are relative rates, their values only matter relative to each other, so we can set $\zeta:=1.0$ by default. Although the GTR model has 6 rates, it only has 5 free parameters!

$$
\Pi_{i} \neq \Pi_{j}
$$

Model Hierarchy

GTR 1986

This is a rate matrix, time reversibility would Require $\boldsymbol{\pi} r_{i j}=\pi r_{j i}$

$$
\Pi_{i} \neq \Pi_{j}
$$

GTR 1986

This is a rate matrix, time reversibility would Require $\pi r_{i j}=\pi r_{j i}$ Solution: introduce a Q matrix Q := $\operatorname{diag(п)~} R$

$$
\Pi_{i} \neq \Pi_{j}
$$

GTR 1986

This is a rate matrix, time reversibility would Require $n r_{i j}=\pi r_{j i}$ Solution: introduce a Q matrix $Q:=\operatorname{diag}(п) R$

Then, $n r_{i j}=\pi r_{j i j}$ holds

So how do we compute $\mathrm{P}(\mathrm{t})$ from Q ?

- As we have seen in the lecture on Markov chains:

$$
P(t)=e^{Q t}=I+Q t+1 / 2!(Q \mathrm{Q})^{2}+1 / 3!(\mathrm{Qt})^{3}+\ldots
$$

- but this is unfortunately a matrix eponential :-(
- I will spare you the details, but in general, e.g., for GTR we need to apply an egienvector/eigenvalue decomposition of Q to calculate:

$$
P(t)=U \exp \left(\operatorname{diag}\left(\lambda_{i}\right) t\right) U^{-1}
$$

So how do we compute $P(t)$ from Q ?

- As we have seen in the lecture on Markov chains:
$P(t)=e^{Q t}=I+Q t+1 / 2!(Q t)^{2}+1 / 3!(Q t)^{3}+\ldots$
- but this is unfortunately a matrix exponential :-(
- I will spare you the details, but in general, e.g., for GTR we need to apply an egienvector/eigenvalue decomposition of Q to calculate:
$P(t)=U \exp \left(\operatorname{diag}\left(\lambda_{i}\right) t\right) U^{-1}$

Diagonal matrix of eigenvalues of Q, here the exponential function $\exp ()$ is invoked on scalar values!

Likelihood Calculations

- So far, we have only seen how to calculate a likelihood on a
- given, fixed tree topology
- with given fixed branch lengths
- and given, fixed remaining model parameters
- Computing the maximum likelihood score, is much more complicated as it requires functions for optimizing continuous parameters and functions for searching the discrete space of trees !

