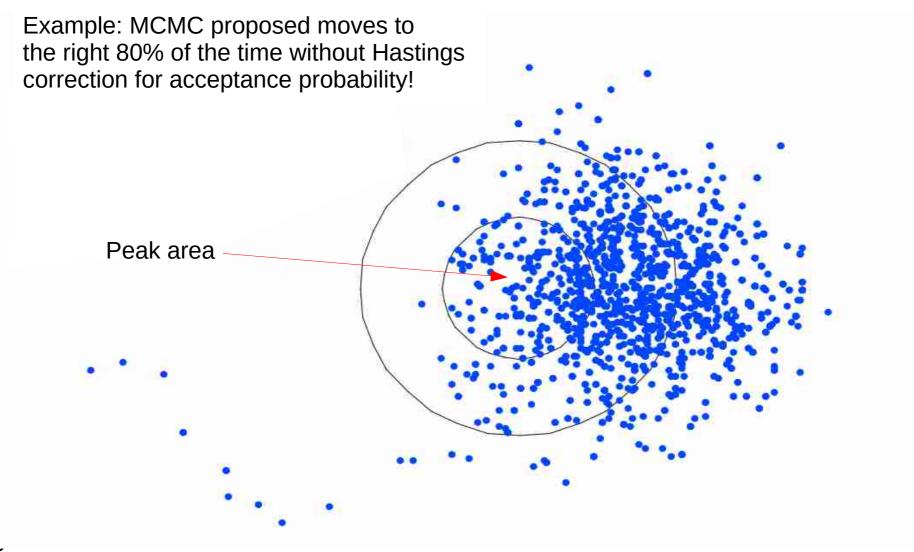
Introduction to Bioinformatics for Computer Scientists

Lecture 13

Outline

- Bayesian statistics
- Monte-Carlo simulation & integration
- Markov-Chain Monte-Carlo methods
- Metropolis-coupled MCMC-methods
- Some phylogenetic proposals
- Reversible jump MCMC

Uncorrected Proposal Distribution A Robot in 3D



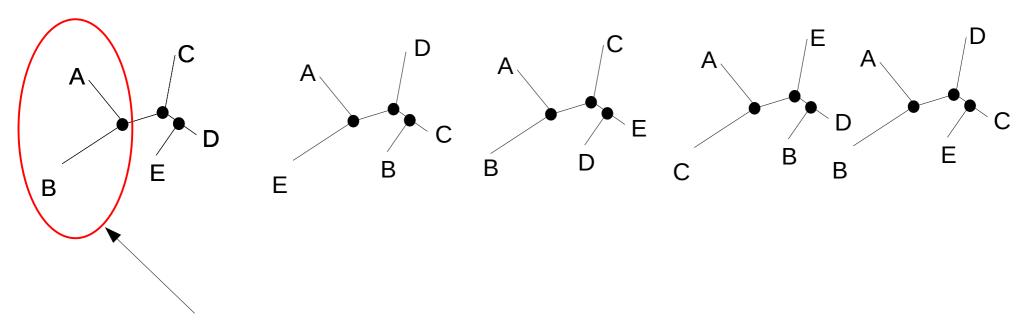
Hastings Correction is not trivial

- Problem with the equation for the hastings correction
- M. Holder, P. Lewis, D. Swofford, B. Larget. 2005.
 Hastings Ratio of the LOCAL Proposal Used in Bayesian Phylogenetics. Systematic Biology. 54:961-965.
 http://sysbio.oxfordjournals.org/content/54/6/961.full

"As part of another study, we estimated the marginal likelihoods of trees using different proposal algorithms and discovered repeatable discrepancies that implied that the published Hastings ratio for a proposal mechanism used in many Bayesian phylogenetic analyses is incorrect."

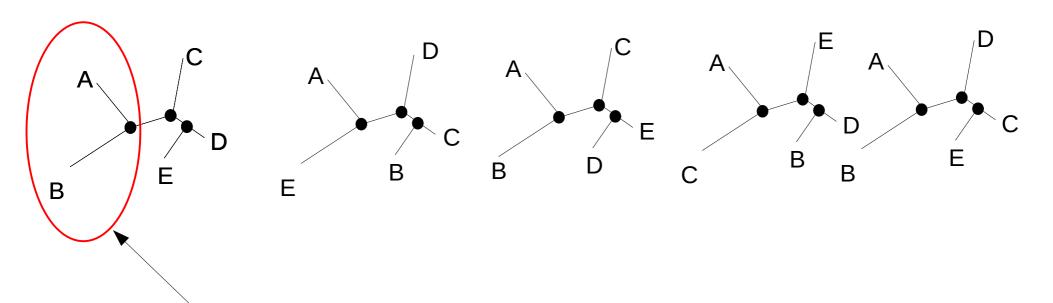
• Incorrect Hastings ratio used from 1999-2005

Back to Phylogenetics



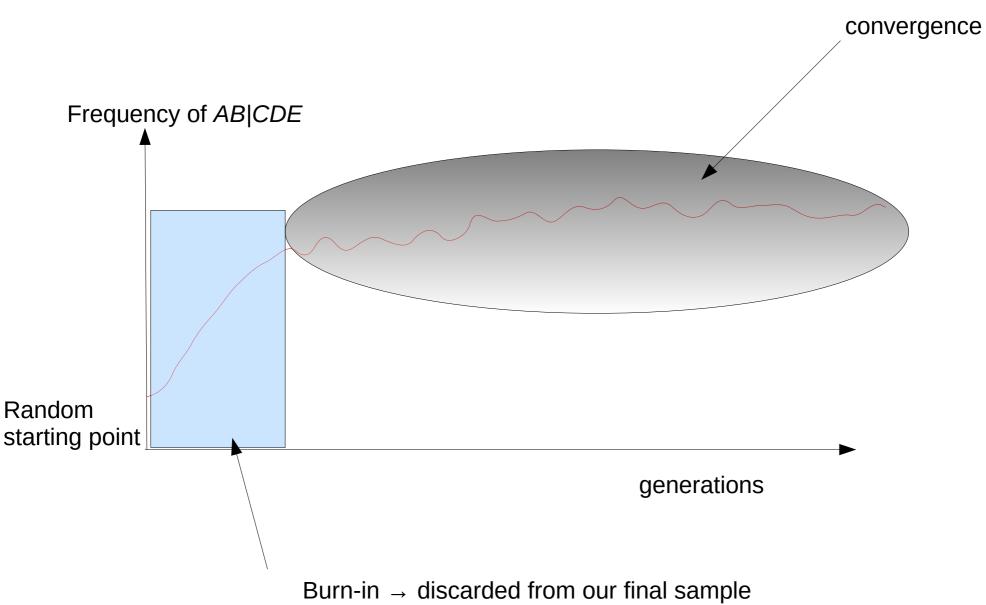
What's the posterior probability of bipartition AB|CDE?

Back to Phylogenetics



What's the posterior probability of bipartition AB|CDE? We just count from the sample generated by MCMC, here it's $3/5 \rightarrow 0.6$ This approximates the true proportion (posterior probability) of bipartition AB|CDEif we have run the chain long enough and if it has converged

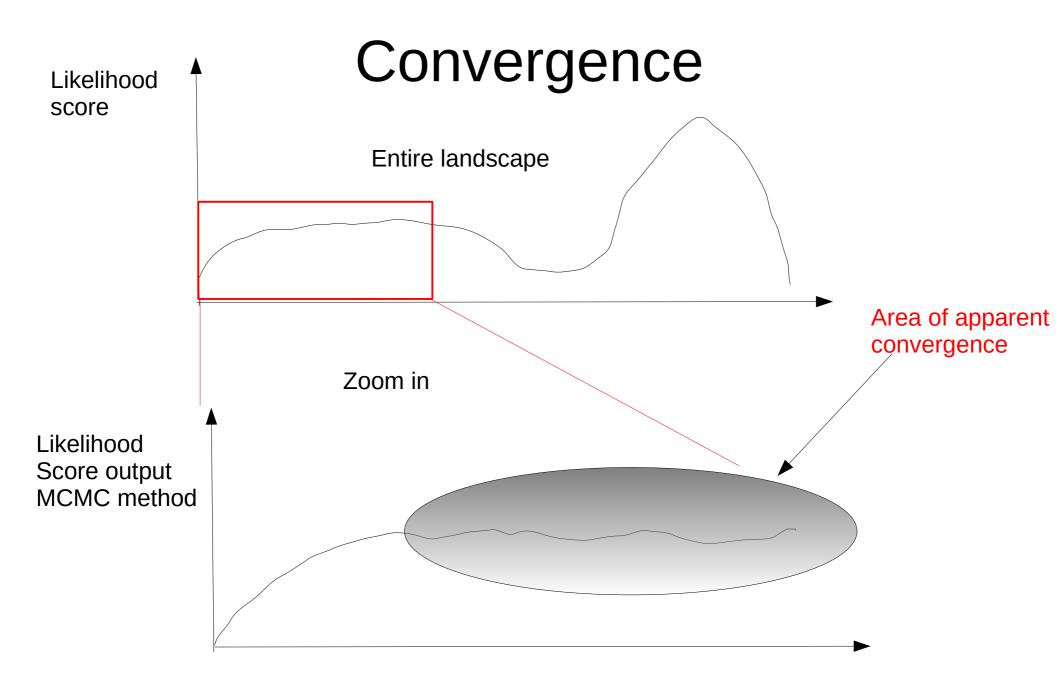
MCMC in practice



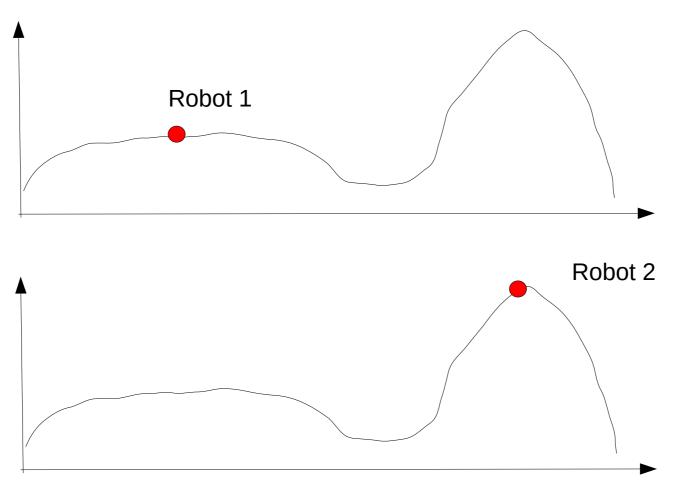
Convergence

- How many samples do we need to draw to obtain an accurate approximation?
- When can we stop drawing samples?
- Methods for convergence diagnosis
 - \rightarrow we can never say that a MCMC-chain has converged
 - \rightarrow we can only diagnose that it has not converged

 \rightarrow a plethora of tools for convergence diagnostics for phylogenetic MCMC

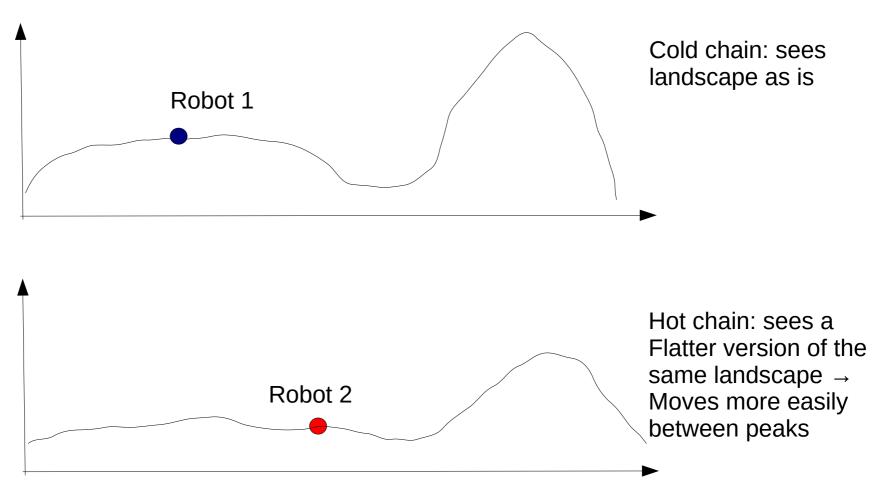


Solution: Run Multiple Chains



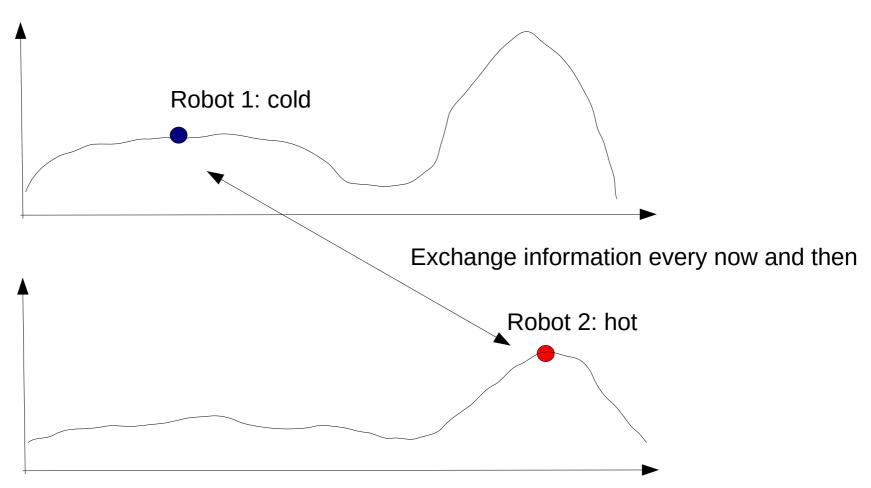
Outline

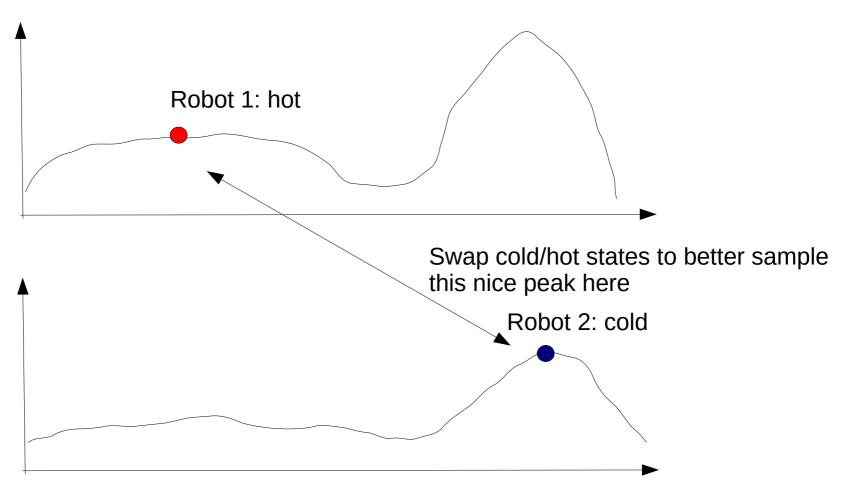
- Bayesian statistics
- Monte-Carlo simulation & integration
- Markov-Chain Monte-Carlo methods
- Metropolis-coupled MCMC-methods
- Some phylogenetic proposals
- Reversible jump MCMC

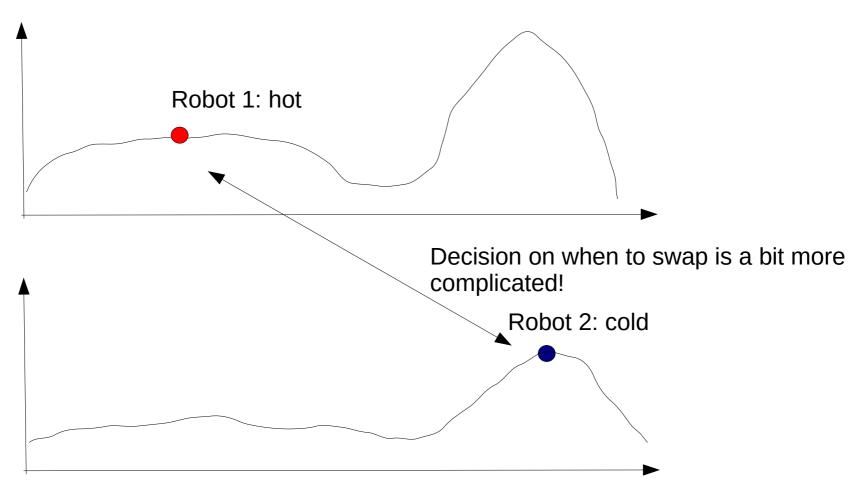


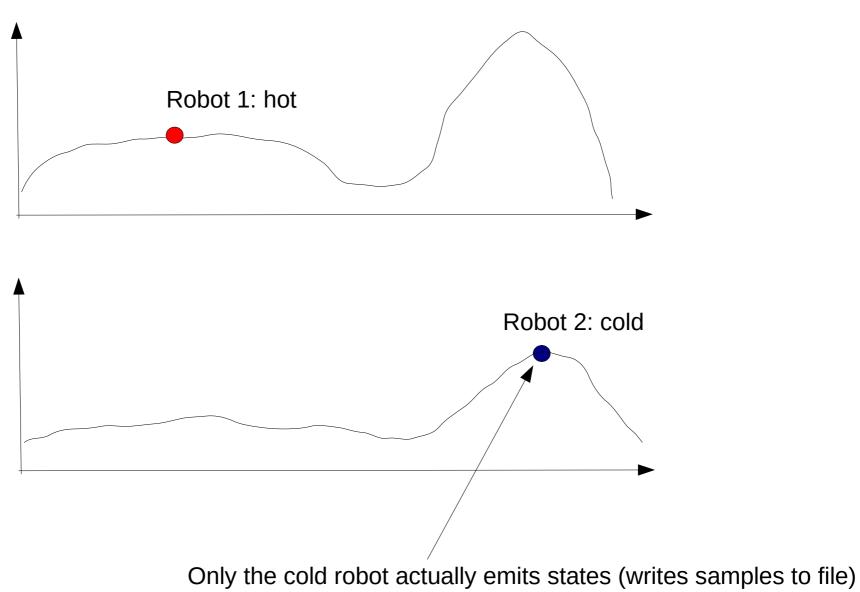
Known as MCMCMC

- Metropolis-Coupled Markov-Chain Monte Carlo
- Run several chains simultaneously
 - 1 cold chain (the one that samples)
 - Several heated chains
- Heated chain robots explore the parameter space in larger steps
- To flatten the landscape the acceptance ratio R is modified as follows: R^{1/1+H} where H is the so-called temperature
 - For the cold chain H := 0.0
 - Setting the temperature for the hot chains is a bit of woodo









A few words about priors

- Prior probabilities convey the scientist's beliefs, before having seen the data
- Using uninformative prior probability distributions (e.g., uniform priors, also called flat priors)

 $\rightarrow\,$ differences between prior and posterior distribution are attributable to likelihood differences

- Priors can bias an analysis
- For instance, we could chose an arbitrary prior distribution for branch lengths in the range [1.0,20.0]

 \rightarrow what happens if branch lengths are much shorter?

Outline

- Bayesian statistics
- Monte-Carlo simulation & integration
- Markov-Chain Monte-Carlo methods
- Metropolis-coupled MCMC-methods
- Some phylogenetic proposals
- Reversible jump MCMC

Some Phylogenetic Proposal Mechanisms

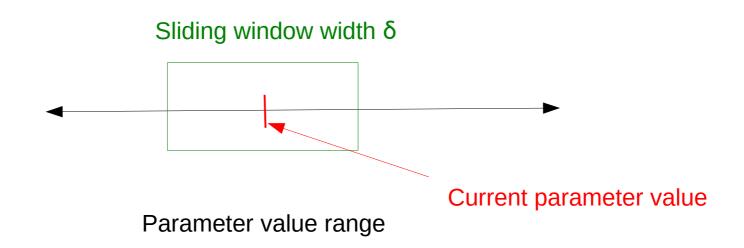
- Branch Lengths
 - Sliding Window Proposal
 - Multiplier Proposal
- Topologies
 - Local Proposal (the one with the bug in the Hastings ratio)
 - Extending TBR (Tree Bisection Reconnection) Proposal
- Remember: We need to design proposals for which
 - We either don't need to calculate the Hastings ratio
 - Or for which we can calculate it
 - That have a 'good' acceptance rate
 - \rightarrow all sorts of tricks being used, e.g., parsimony-biased topological proposals

Some Phylogenetic Proposal Mechanisms

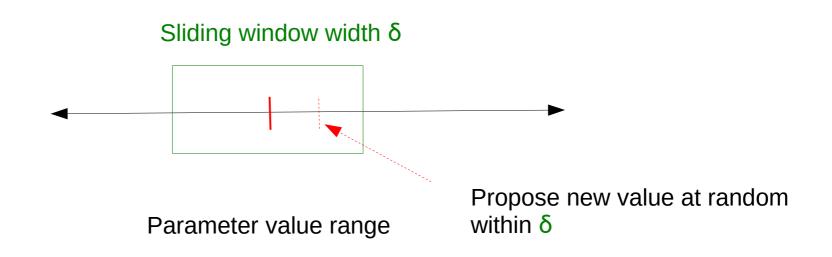
- Univariate parameters & branch lengths
 - Sliding Window Proposal
- Branch lengths
 - Node slider proposal
- Topologies
 - Local Proposal (the one with the bug in the Hastings ratio!)
- Remember: We need to design proposals for which
 - We either don't need to calculate the Hastings ratio
 - Or for which we can calculate it
 - That have an appropriate acceptance rate
 - \rightarrow all sorts of tricks being used, e.g., parsimony-biased topological proposals
 - \rightarrow acceptance rate should be around 25% (empirical observation)

 \rightarrow for sampling from a multivariate normal distribution it has been formally shown that an acceptance rate of 23.4% is optimal

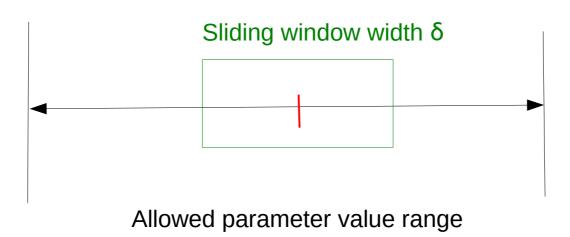
Sliding Window Proposal



Sliding Window Proposal

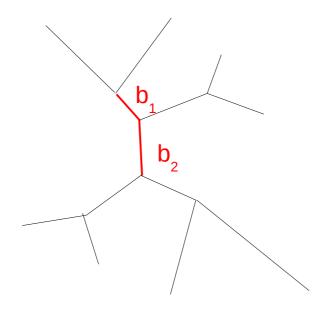


Sliding Window Proposal

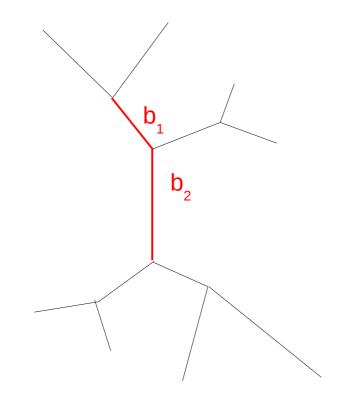


Notes:

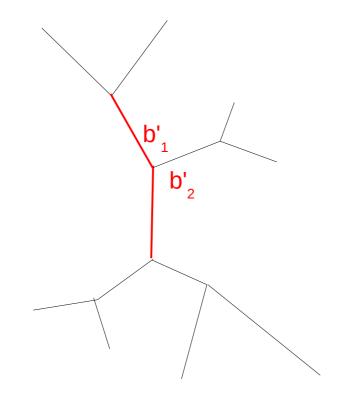
- 1. The hastings ratio of this move is 1
- 2. The edge cases can be handled by back-projection
- 3. The window size δ can be tuned itself (auto-tuning) to obtain an acceptance rate of $\approx \frac{1}{4}$
- 4. This proposal can be used, e.g., for the *a*-shape parameter of the Γ function in rate heterogeneity models



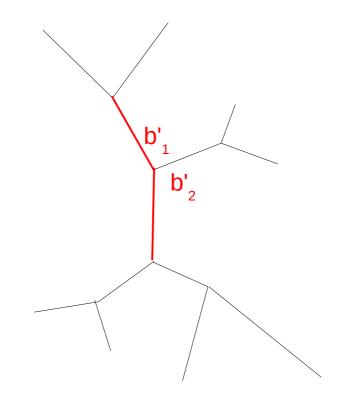
1. Pick *2* contiguous branches at random



 Pick 2 contiguous branches at random
 Multiply the 2 branches by the same random number

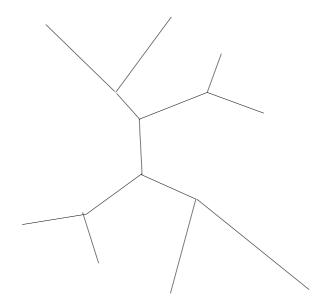


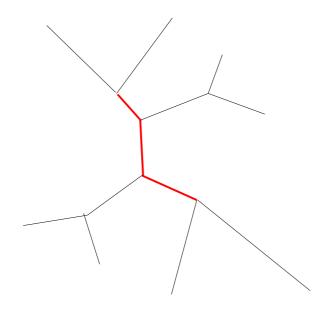
1. Pick 2 contiguous branches at random 2. Multiply the 2 branches by the same random number 3. Propose a new branch ratio b_1/b_2 at random



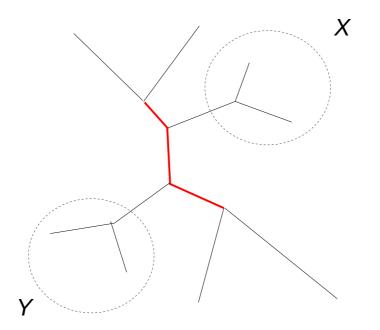
1. Pick 2 contiguous branches at random 2. Multiply the 2 branches by the same random number 3. Propose a new branch ratio b_1/b_2 at random

The Hastings ratio of this move is not 1!

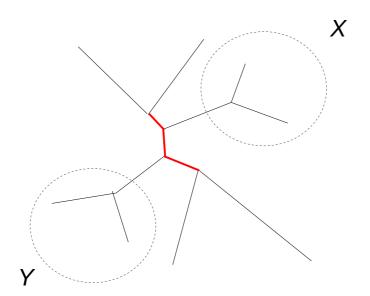




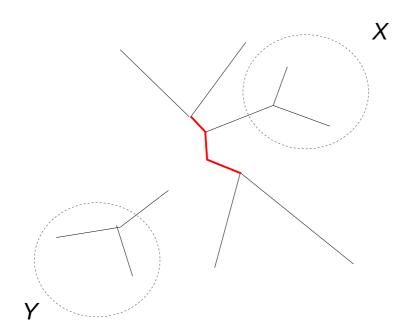
1. Pick 3 contiguous branches at random



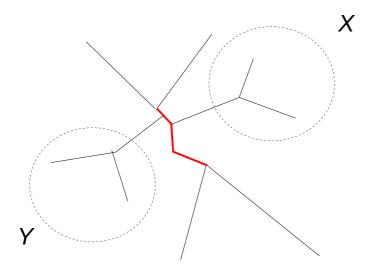
1. Pick 3 contiguous branches at random that define 2 Subtrees X and Y



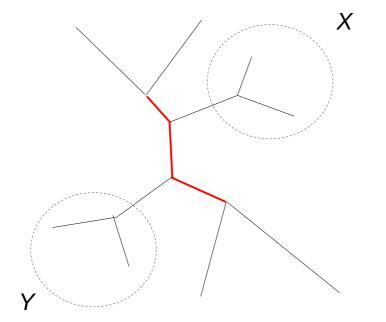
 Pick 3 contiguous branches at random that define 2
 Subtrees X and Y
 shrink or grow selected 3
 branch segment by a random amount

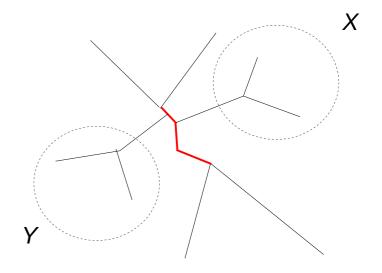


 Pick 3 contiguous branches at random that define 2
 Subtrees X and Y
 shrink or grow selected 3
 branch segment by a random Amount
 Chose either X or Y at random and prune it from the tree



 Pick 3 contiguous branches at random that define 2 Subtrees X and Y
 shrink or grow selected 3 branch segment by a random Amount
 Chose either X or Y at random And prune it from the tree
 Re-insert Y at random into The 3 branch segment



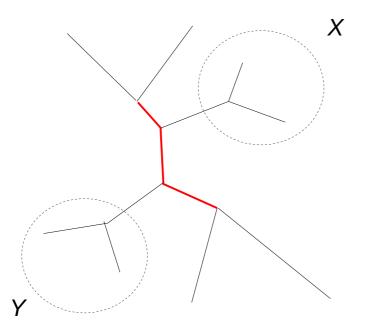


Initial tree t

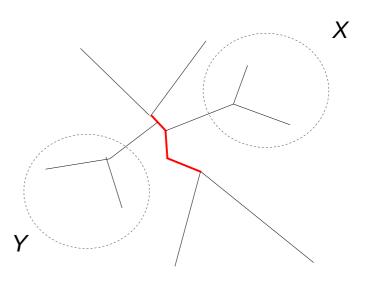
Proposed tree t_{i+1}

Proposed tree: 3 branch lengths changed and one NNI (Nearest Neighbor Interchange) move applied

LnL = -3000



LnL = -2900



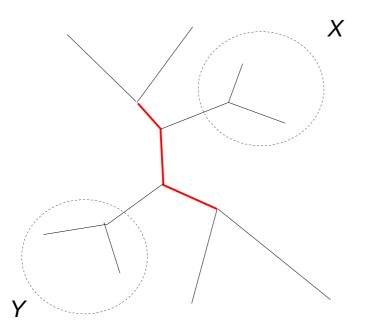
Initial tree t

Proposed tree t_{i+1}

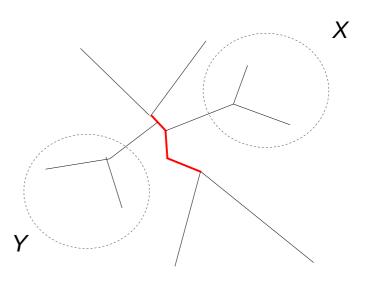
The proposed tree has a better likelihood! Will the proposed tree always be accepted?

Moving through Tree Space

LnL = -3000



LnL = -2900



Initial tree t

Proposed tree t_{i+1}

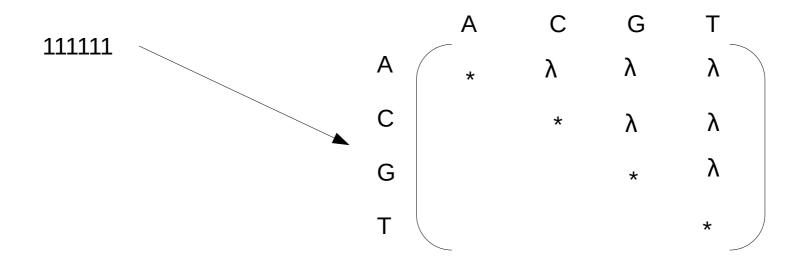
The proposed tree has a better likelihood! Will the proposed tree always be accepted? \rightarrow think about Priors and Hastings ratio!

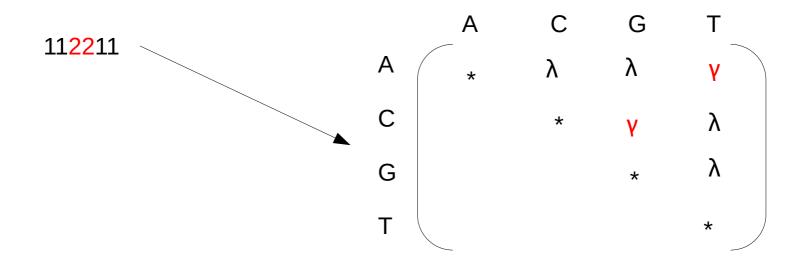
Outline

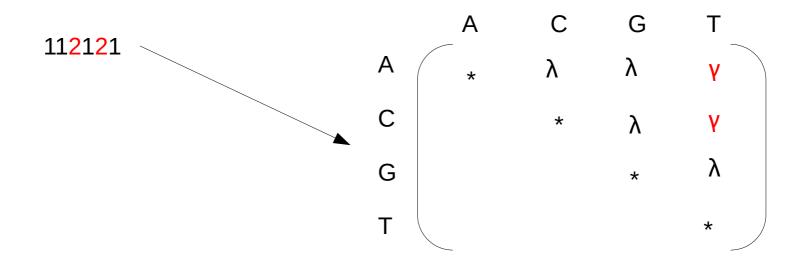
- Bayesian statistics
- Monte-Carlo simulation & integration
- Markov-Chain Monte-Carlo methods
- Metropolis-coupled MCMC-methods
- Some phylogenetic proposals
- Reversible jump MCMC

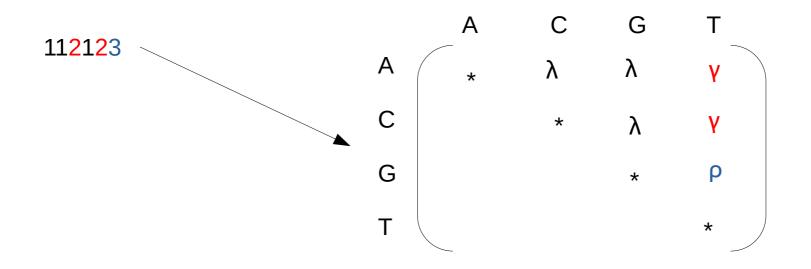
How do we select models using MCMC?

- **Example:** Consider all possible time-reversible nucleotide substitution models ranging from Jukes Cantor (JC, 1 rate) to the General Time Reversible Model (GTR, 6 rates)
- We will denote rate configurations by strings, e.g.,
 - 111111 is the JC model
 - ..
 - 123456 is the GTR model
- Let me explain this further ...









How many time-reversible DNA models are there?

- Number of ways a set with n objects can be partitioned into disjoint nonempty sets
- **Example:** the set {*a*,*b*,*c*} can be partitioned as follows:

{ {a}, {b}, {c} } { {a}, {b, c} } { {b}, {a, c} } { {c}, {a, b} } { {a, b, c} }

• The number of combinations for *n* (3 in our example) is given by the socalled *Bell* number, for details see https://en.wikipedia.org/wiki/Bell_number

The Bell Numbers

- $n:=1 \rightarrow 1$
- $n:=2 \rightarrow 2$
- *n:*=3 → 5
- $n:=4 \rightarrow 15$
- $n:=5 \rightarrow 52$
- $n:=6 \rightarrow 203$
- $n:=7 \rightarrow 877$
- etc...

What do we need?

- Apart from our usual suspect parameters (tree topology, branch lengths, stationary frequencies, substitution rates, *a*), we also want to integrate over different models now ...
- What are the problems we need to solve?

What do we need?

- Apart from our usual suspect parameters (tree topology, branch lengths, stationary frequencies, substitution rates, α), we also want to integrate over different models now ...
- What are the problems we need to solve?
 - Problem #1: we need to design proposals for moving between different models
 - Problem #2: those models have different numbers of parameters, we can not directly compare likelihoods
- Here we use MCMC to not only sample model parameters, but also models

Problem #1 Model Proposals

• Any ideas?

Problem #1 Model Proposals

• Split move

Chose a set of substitution rates with > 1 member at random 111222 (two-parameter model) and split it randomly into two rates 111223 (three-parameter model)

• Merge move

Chose two substitution rate sets at random

111223

and merge them into one substitution rate set

111222

Problem #1 Model Proposals

• Split move

Chose a set of substitution rates with > 1 member at random

111222 (two-parameter model)

and split it randomly in

111223 (three-param

Clear to everyone what the respective rate matrix looks like?

• Merge move

Chose two substitution rate sets at random

111223 -

and merge them into one substitution rate set

111222

Problem #2 Sampling Different Models

- Use reversible jump MCMC (rjMCMC) to jump between models (posterior probability distributions) with different number of parameters (posterior distributions with different dimensions)
- The model proposal moves we designed are reversible jump moves!
- Evidently, we need to somehow modify our proposal ratio calculation ...
- In general terms, the acceptance ratio is calculated as:

r = likelihood ratio * prior ratio * proposal ratio * Jacobian

A Jacobian defines a linear map from $\mathbb{R}^n \to \mathbb{R}^m$ at point *x*, if function f(x)is differentiable at *x*

Problem #2 Sampling Different Models

- Use reversible jump MCMC (rjMCMC) to jump between models (posterior probability distributions) with different number of parameters (posterior distributions with different dimensions)
- The model proposal moves we designed are reversible jump moves!
- Evidently, we need to somehow modify our proposal ratio calculation ...
- In general terms, the acceptance ratio is calculated as:

r = likelihood ratio * prior ratio * proposal ratio * Jacobian

I will not provide further Details; see work by Peter Green (1995, 2003) who developed the rjMCMC methods

rjMCMC - summary

- Need to design moves that can jump back and forth between models of different dimensions (parameter counts)
- Need to extend acceptance ratio calculation to account for jumps between different models
- The posterior probability of a specific model (e.g., *JC* or *GTR*) is calculated as the fraction of time (fraction of samples) the MCMC chain visited/spent time/generations sampling within that model ...