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Introduction to Bioinformatics for 
Computer Scientists

Lecture 13
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Outline

● Bayesian statistics

● Monte-Carlo simulation & integration

● Markov-Chain Monte-Carlo methods

● Metropolis-coupled MCMC-methods

● Some phylogenetic proposals 

● Reversible jump MCMC 
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Uncorrected Proposal Distribution
A Robot in 3D 

Example: MCMC proposed moves to
the right 80% of the time without Hastings 
correction for acceptance probability!

Peak area
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Hastings Correction is not trivial

● Problem with the equation for the hastings correction 

● M. Holder, P. Lewis, D. Swofford, B. Larget.  2005.        
Hastings Ratio of the LOCAL Proposal Used in Bayesian 
Phylogenetics. Systematic Biology. 54:961-965. 
http://sysbio.oxfordjournals.org/content/54/6/961.full 

“As part of another study, we estimated the marginal likelihoods 
of trees using different proposal algorithms and discovered 
repeatable discrepancies that implied that the published 
Hastings ratio for a proposal mechanism used in many 
Bayesian phylogenetic analyses is incorrect.”

● Incorrect Hastings ratio used from 1999-2005

http://sysbio.oxfordjournals.org/content/54/6/961.full
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Back to Phylogenetics
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What's the posterior probability of bipartition AB|CDE?
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Back to Phylogenetics
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What's the posterior probability of bipartition AB|CDE?
We just count from the sample generated by MCMC, here it's 3/5 → 0.6
This approximates the true proportion (posterior probability) of bipartition AB|CDE 
if we have run the chain long enough and if it has converged
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MCMC in practice

Frequency of AB|CDE

generations

convergence

Burn-in → discarded from our final sample

Random
starting point
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Convergence

● How many samples do we need to draw to obtain an accurate 
approximation?

● When can we stop drawing samples?

● Methods for convergence diagnosis

→ we can never say that a MCMC-chain has converged

→ we can only diagnose that it has not converged

→ a plethora of tools for convergence diagnostics for 
phylogenetic MCMC
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Convergence

Entire landscape

Likelihood 
score

Likelihood 
Score output
MCMC method

Area of apparent
convergence

Zoom in
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Solution: Run Multiple Chains

Robot 1

Robot 2
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Outline

● Bayesian statistics

● Monte-Carlo simulation & integration

● Markov-Chain Monte-Carlo methods

● Metropolis-coupled MCMC-methods

● Some phylogenetic proposals 

● Reversible jump MCMC 
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Heated versus Cold Chains

Robot 1

Robot 2

Cold chain: sees 
landscape as is

Hot chain: sees a 
Flatter version of the 
same landscape → 
Moves more easily 
between peaks
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Known as MCMCMC

● Metropolis-Coupled Markov-Chain Monte Carlo

● Run several chains simultaneously

● 1 cold chain (the one that samples)
● Several heated chains

● Heated chain robots explore the parameter space in larger 
steps

● To flatten the landscape the acceptance ratio R is modified as 
follows: R1/1+H where H is the so-called temperature 

– For the cold chain H := 0.0
– Setting the temperature for the hot chains is a bit of woo-

do 
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Heated versus Cold Chains

Robot 1: cold

Robot 2: hot

Exchange information every now and then
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Heated versus Cold Chains

Robot 1: hot

Robot 2: cold

Swap cold/hot states to better sample 
this nice peak here
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Heated versus Cold Chains

Robot 1: hot

Robot 2: cold

Decision on when to swap is a bit more 
complicated!
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Heated versus Cold Chains

Robot 1: hot

Robot 2: cold

Only the cold robot actually emits states (writes samples to file)
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A few words about priors

● Prior probabilities convey the scientist's beliefs, before having 
seen the data

● Using uninformative prior probability distributions (e.g., uniform 
priors, also called flat priors)

→  differences between prior and posterior distribution are 
attributable to likelihood differences

● Priors can bias an analysis 

● For instance, we could chose an arbitrary prior distribution for 
branch lengths in the range [1.0,20.0]

→ what happens if branch lengths are much shorter?
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Outline 

● Bayesian statistics

● Monte-Carlo simulation & integration

● Markov-Chain Monte-Carlo methods

● Metropolis-coupled MCMC-methods

● Some phylogenetic proposals 

● Reversible jump MCMC 
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Some Phylogenetic Proposal 
Mechanisms

● Branch Lengths

● Sliding Window Proposal

● Multiplier Proposal

● Topologies

● Local Proposal (the one with the bug in the Hastings ratio)

● Extending TBR (Tree Bisection Reconnection) Proposal

● Remember: We need to design proposals for which 

● We either don't need to calculate the Hastings ratio

● Or for which we can calculate it

● That have a 'good' acceptance rate 

→ all sorts of tricks being used, e.g., parsimony-biased topological proposals
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Some Phylogenetic Proposal 
Mechanisms

● Univariate parameters & branch lengths

● Sliding Window Proposal 
● Branch lengths

● Node slider proposal 
● Topologies

● Local Proposal (the one with the bug in the Hastings ratio!)
● Remember: We need to design proposals for which 

● We either don't need to calculate the Hastings ratio
● Or for which we can calculate it
● That have an appropriate acceptance rate 

→ all sorts of tricks being used, e.g., parsimony-biased topological proposals

→ acceptance rate should be around 25% (empirical observation) 

→ for sampling from a multivariate normal distribution it has been formally shown that 
an acceptance rate of 23.4% is optimal
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Sliding Window Proposal

Parameter value range
Current parameter value

Sliding window width δ
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Sliding Window Proposal

Parameter value range

Sliding window width δ

Propose new value at random
within δ
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Sliding Window Proposal

Allowed parameter value range

Sliding window width δ

Notes: 
1. The hastings ratio of this move is 1
2. The edge cases can be handled by back-projection
3. The window size δ can be tuned itself (auto-tuning) to obtain an acceptance rate of ≈ ¼
4. This proposal can be used, e.g., for the α-shape parameter of the Γ function in rate heterogeneity models
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The Node Slider Proposal

1. Pick 2 contiguous branches 
at random

b
1

b
2
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The Node Slider Proposal

1. Pick 2 contiguous branches 
at random
2. Multiply the 2 branches by 
the same random number

b
2

b
1
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The Node Slider Proposal

1. Pick 2 contiguous branches 
at random
2. Multiply the 2 branches by 
the same random number
3. Propose a new branch ratio 
b

1
/b

2
 at random 

b'
1

b'
2



  
28

The Node Slider Proposal

1. Pick 2 contiguous branches 
at random
2. Multiply the 2 branches by 
the same random number
3. Propose a new branch ratio 
b

1
/b

2
 at random 

b'
1

b'
2

The Hastings ratio of this move
is not 1!
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Moving through Tree Space
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Moving through Tree Space

1. Pick 3 contiguous branches 
at random



  
31

Moving through Tree Space

1. Pick 3 contiguous branches 
at random that define 2 
Subtrees X and Y

X

Y
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Moving through Tree Space

1. Pick 3 contiguous branches 
at random that define 2 
Subtrees X and Y
2. shrink or grow selected 3 
branch segment by a random 
amount

X

Y
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Moving through Tree Space

1. Pick 3 contiguous branches 
at random that define 2 
Subtrees X and Y
2. shrink or grow selected 3 
branch segment by a random 
Amount
3. Chose either X or Y at 
random and prune it from the tree 

X

Y
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Moving through Tree Space

1. Pick 3 contiguous branches 
at random that define 2 
Subtrees X and Y
2. shrink or grow selected 3 
branch segment by a random 
Amount
3. Chose either X or Y at random 
And prune it from the tree
4. Re-insert Y at random into
The 3 branch segment 

X

Y
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Moving through Tree Space

X

Y

X

Y

Initial tree t
i Proposed tree t

i+1

Proposed tree: 3 branch lengths changed and one NNI 
(Nearest Neighbor Interchange) move applied
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Moving through Tree Space

X

Y

X

Y

Initial tree t
i Proposed tree t

i+1

The proposed tree has a better likelihood!
Will the proposed tree always be accepted? 

LnL = -3000 LnL = -2900



  
37

Moving through Tree Space

X

Y

X

Y

Initial tree t
i Proposed tree t

i+1

The proposed tree has a better likelihood!
Will the proposed tree always be accepted?
→ think about Priors and Hastings ratio!

LnL = -3000 LnL = -2900
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Outline

● Bayesian statistics

● Monte-Carlo simulation & integration

● Markov-Chain Monte-Carlo methods

● Metropolis-coupled MCMC-methods

● Some phylogenetic proposals 

● Reversible jump MCMC 
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How do we select models using 
MCMC?

● Example: Consider all possible time-reversible nucleotide 
substitution models ranging from Jukes Cantor (JC, 1 rate) to 
the General Time Reversible Model (GTR, 6 rates)

● We will denote rate configurations by strings, e.g.,

● 111111 is the JC model
● ...
● 123456 is the GTR model

● Let me explain this further ...
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Model Strings

111111
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Model Strings

111111
A

C

G

T

A           C         G         T
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*

*

* λ λ λ

λ λ

λ
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Model Strings

112211
A

C

G

T

A           C         G         T

*

*

*

* λ λ γ

γ λ

λ
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Model Strings

112121
A

C

G

T

A           C         G         T
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*

*

* λ λ γ

γλ

λ
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Model Strings

112123
A

C
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T

A           C         G         T
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*

*

* λ λ γ

γλ

ρ



  
45

How many time-reversible DNA 
models are there? 

● Number of ways a set with n objects can be partitioned into disjoint non-
empty sets

● Example: the set {a,b,c} can be partitioned as follows:

{ {a}, {b}, {c} }

{ {a}, {b, c} }

{ {b}, {a, c} }

{ {c}, {a, b} }

{ {a, b, c} }

● The number of combinations for n (3 in our example) is given by the  so-
called Bell number, for details see 
https://en.wikipedia.org/wiki/Bell_number 

https://en.wikipedia.org/wiki/Bell_number
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The Bell Numbers

● n:= 1 → 1

● n:= 2 → 2

● n:=3 → 5

● n:= 4 → 15

● n:= 5 → 52

● n:= 6 → 203

● n:= 7 → 877

● etc...
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What do we need?

● Apart from our usual suspect parameters (tree topology, branch 
lengths, stationary frequencies, substitution rates, α), we also 
want to integrate over different models now …

● What are the problems we need to solve? 
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What do we need?

● Apart from our usual suspect parameters (tree topology, branch 
lengths, stationary frequencies, substitution rates, α), we also 
want to integrate over different models now …

● What are the problems we need to solve?

● Problem #1:  we need to design proposals for moving 
between different models 

● Problem #2: those models have different numbers of 
parameters, we can not directly compare likelihoods 

● Here we use MCMC to not only sample model parameters, but 
also models 
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Problem #1
Model Proposals

● Any ideas? 
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Problem #1
Model Proposals

● Split move

Chose a set of substitution rates with > 1 member at random

111222 (two-parameter model)

and split it randomly into two rates 

111223 (three-parameter model)
● Merge move

Chose two substitution rate sets at random 

111223

and merge them into one substitution rate set

111222
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Problem #1
Model Proposals

● Split move

Chose a set of substitution rates with > 1 member at random

111222 (two-parameter model)

and split it randomly into two rates 

111223 (three-parameter model)
● Merge move

Chose two substitution rate sets at random 

111223

and merge them into one substitution rate set

111222

Clear to everyone what the 
respective rate matrix looks like?
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Problem #2 
Sampling Different Models

● Use reversible jump MCMC (rjMCMC) to jump between models 
(posterior probability distributions) with different number of 
parameters (posterior distributions with different dimensions)

● The model proposal moves we designed are reversible jump 
moves! 

● Evidently, we need to somehow modify our proposal ratio 
calculation …

● In general terms, the acceptance ratio is calculated as: 

r = likelihood ratio * prior ratio * proposal ratio * Jacobian

A Jacobian defines 
a linear map from Rn → Rm

at point x, if function f(x) 
is differentiable at x
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Problem #2 
Sampling Different Models

● Use reversible jump MCMC (rjMCMC) to jump between models 
(posterior probability distributions) with different number of 
parameters (posterior distributions with different dimensions)

● The model proposal moves we designed are reversible jump 
moves! 

● Evidently, we need to somehow modify our proposal ratio 
calculation …

● In general terms, the acceptance ratio is calculated as: 

r = likelihood ratio * prior ratio * proposal ratio * Jacobian

I will not provide further 
Details; see work by Peter Green 

(1995, 2003) who developed
the rjMCMC  methods
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rjMCMC - summary

● Need to design moves that can jump back and forth between 
models of different dimensions (parameter counts) 

● Need to extend acceptance ratio calculation to account for 
jumps between different models

● The posterior probability of a specific model (e.g., JC or GTR) is 
calculated as the fraction of time (fraction of samples) the 
MCMC chain visited/spent time/generations sampling within that 
model ...
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