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Bayes Theorem

Pr(B|A) = Pr(A|B) Pr(B) / Pr(A)

Posterior probability

likelihood

Prior probability Marginal probability
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A few words about priors

● Prior probabilities convey the scientist's beliefs, before having 
seen the data

● Using uninformative prior probability distributions (e.g., uniform 
priors, also called flat priors)

→  differences between prior and posterior distribution are 
attributable to likelihood differences only 

● Priors can bias an analysis !

● For instance, we could chose an arbitrary prior distribution for 
branch lengths in the range [1.0,20.0]

→ what happens if branch lengths are much shorter?
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An Analysis from Last Week

● We analyzed a couple of natural language datasets 

● Under ML we found a very weird bi-modal distribution of the α-
shape parameter for the Γ model of rate heterogeneity 
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What did the Bayesian Inference 
yield? 

● With the default prior used for molecular Sequence Datasets 
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Empirical Distribution of α

● For tens of thousands of empirical molecular datasets this is 
how the ML estimate of α is distributed 
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When specifying a uniform prior 
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Some Phylogenetic Proposal 
Mechanisms

● Branch Lengths

● Sliding Window Proposal

● Multiplier Proposal

● Topologies

● Local Proposal (the one with the bug in the Hastings ratio)

● Extending TBR (Tree Bisection Reconnection) Proposal

● Remember: We need to design proposals for which 

● We either don't need to calculate the Hastings ratio

● Or for which we can calculate it

● That have a 'good' acceptance rate 

→ all sorts of tricks being used, e.g., parsimony-biased topological proposals
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Some Phylogenetic Proposal 
Mechanisms

● Univariate parameters & branch lengths

● Sliding Window Proposal 
● Branch lengths

● Node slider proposal 
● Topologies

● Local Proposal (the one with the bug in the Hastings ratio!)
● Remember: We need to design proposals for which 

● We either don't need to calculate the Hastings ratio
● Or for which we can calculate it
● That have an appropriate acceptance rate 

→ all sorts of tricks being used, e.g., parsimony-biased topological proposals

→ acceptance rate should be around 25% (empirical observation) 

→ for sampling from a multivariate normal distribution it has been formally shown that 
an acceptance rate of 23.4% is optimal
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Sliding Window Proposal

Parameter value range
Current parameter value

Sliding window width δ
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Sliding Window Proposal

Parameter value range

Sliding window width δ

Propose new value at random
within δ
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Sliding Window Proposal

Allowed parameter value range

Sliding window width δ

Notes: 
1. The hastings ratio of this move is 1
2. The edge cases can be handled by back-projection
3. The window size δ can be tuned itself (auto-tuning) to obtain an acceptance rate of ≈ ¼
4. This proposal can be used, e.g., for the α-shape parameter of the Γ function in rate heterogeneity models
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The Node Slider Proposal

1. Pick 2 contiguous branches 
at random

b
1

b
2
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The Node Slider Proposal

1. Pick 2 contiguous branches 
at random
2. Multiply the 2 branches by 
the same random number

b
2

b
1



  
18

The Node Slider Proposal

1. Pick 2 contiguous branches 
at random
2. Multiply the 2 branches by 
the same random number
3. Propose a new branch ratio 
b

1
/b

2
 at random 

b'
1

b'
2
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The Node Slider Proposal

1. Pick 2 contiguous branches 
at random
2. Multiply the 2 branches by 
the same random number
3. Propose a new branch ratio 
b

1
/b

2
 at random 

b'
1

b'
2

The Hastings ratio of this move
is not 1!
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Moving through Tree Space
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Moving through Tree Space

1. Pick 3 contiguous branches 
at random
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Moving through Tree Space

1. Pick 3 contiguous branches 
at random that define 2 
Subtrees X and Y

X

Y
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Moving through Tree Space

1. Pick 3 contiguous branches 
at random that define 2 
Subtrees X and Y
2. shrink or grow selected 3 
branch segment by a random 
amount

X

Y
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Moving through Tree Space

1. Pick 3 contiguous branches 
at random that define 2 
Subtrees X and Y
2. shrink or grow selected 3 
branch segment by a random 
Amount
3. Chose either X or Y at 
random and prune it from the tree 

X

Y
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Moving through Tree Space

1. Pick 3 contiguous branches 
at random that define 2 
Subtrees X and Y
2. shrink or grow selected 3 
branch segment by a random 
Amount
3. Chose either X or Y at random 
And prune it from the tree
4. Re-insert Y at random into
The 3 branch segment 

X

Y
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Moving through Tree Space

X

Y

X

Y

Initial tree t
i Proposed tree t

i+1

Proposed tree: 3 branch lengths changed and one NNI 
(Nearest Neighbor Interchange) move applied
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Moving through Tree Space

X

Y

X

Y

Initial tree t
i Proposed tree t

i+1

The proposed tree has a better likelihood!
Will the proposed tree always be accepted? 

LnL = -3000 LnL = -2900
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Moving through Tree Space

X

Y

X

Y

Initial tree t
i Proposed tree t

i+1

The proposed tree has a better likelihood!
Will the proposed tree always be accepted?
→ think about Priors and Hastings ratio!

LnL = -3000 LnL = -2900
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How do we select models using 
MCMC?

● Example: Consider all possible time-reversible nucleotide 
substitution models ranging from Jukes Cantor (JC, 1 rate) to 
the General Time Reversible Model (GTR, 6 rates)

● We will denote rate configurations by strings, e.g.,

● 111111 is the JC model
● ...
● 123456 is the GTR model

● Let me explain this further ...
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Model Strings

111111
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Model Strings

111111
A

C

G

T

A           C         G         T

*

*

*

* λ λ λ

λ λ

λ
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Model Strings

112211
A

C

G

T

A           C         G         T

*

*

*

* λ λ γ

γ λ

λ
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Model Strings

112121
A

C

G

T

A           C         G         T

*

*

*

* λ λ γ

γλ

λ
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Model Strings

112123
A

C

G

T

A           C         G         T

*

*

*

* λ λ γ

γλ

ρ
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How many time-reversible DNA 
models are there? 

● Number of ways a set with n objects can be partitioned into disjoint non-
empty sets

● Example: the set {a,b,c} can be partitioned as follows:

{ {a}, {b}, {c} }

{ {a}, {b, c} }

{ {b}, {a, c} }

{ {c}, {a, b} }

{ {a, b, c} }

● The number of combinations for n (3 in our example) is given by the  so-
called Bell number, for details see 
https://en.wikipedia.org/wiki/Bell_number 

https://en.wikipedia.org/wiki/Bell_number
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The Bell Numbers

● n:= 1 → 1

● n:= 2 → 2

● n:=3 → 5

● n:= 4 → 15

● n:= 5 → 52

● n:= 6 → 203

● n:= 7 → 877

● etc...



  
38

What do we need?

● Apart from our usual suspect parameters (tree topology, branch 
lengths, stationary frequencies, substitution rates, α), we also 
want to integrate over different models now …

● What are the problems we need to solve? 
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What do we need?

● Apart from our usual suspect parameters (tree topology, branch 
lengths, stationary frequencies, substitution rates, α), we also 
want to integrate over different models now …

● What are the problems we need to solve?

● Problem #1:  we need to design proposals for moving 
between different models 

● Problem #2: those models have different numbers of 
parameters, we can not directly compare likelihoods 

● Here we use MCMC to not only sample model parameters, but 
also models 
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Problem #1
Model Proposals

● Any ideas? 



  
41

Problem #1
Model Proposals

● Split move

Chose a set of substitution rates with > 1 member at random

111222 (two-parameter model)

and split it randomly into two rates 

111223 (three-parameter model)
● Merge move

Chose two substitution rate sets at random 

111223

and merge them into one substitution rate set

111222
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Problem #1
Model Proposals

● Split move

Chose a set of substitution rates with > 1 member at random

111222 (two-parameter model)

and split it randomly into two rates 

111223 (three-parameter model)
● Merge move

Chose two substitution rate sets at random 

111223

and merge them into one substitution rate set

111222

Clear to everyone what the 
respective rate matrix looks like?
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Problem #2 
Sampling Different Models

● Use reversible jump MCMC (rjMCMC) to jump between models 
(posterior probability distributions) with different number of 
parameters (posterior distributions with different dimensions)

● The model proposal moves we designed are reversible jump 
moves! 

● Evidently, we need to somehow modify our proposal ratio 
calculation …

● In general terms, the acceptance ratio is calculated as: 

r = likelihood ratio * prior ratio * proposal ratio * Jacobian

A Jacobian defines 
a linear map from Rn → Rm

at point x, if function f(x) 
is differentiable at x
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Problem #2 
Sampling Different Models

● Use reversible jump MCMC (rjMCMC) to jump between models 
(posterior probability distributions) with different number of 
parameters (posterior distributions with different dimensions)

● The model proposal moves we designed are reversible jump 
moves! 

● Evidently, we need to somehow modify our proposal ratio 
calculation …

● In general terms, the acceptance ratio is calculated as: 

r = likelihood ratio * prior ratio * proposal ratio * Jacobian

I will not provide further 
Details; see work by Peter Green 

(1995, 2003) who developed
the rjMCMC  methods
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rjMCMC - summary

● Need to design moves that can jump back and forth between 
models of different dimensions (parameter counts) 

● Need to extend acceptance ratio calculation to account for 
jumps between different models

● The posterior probability of a specific model (e.g., JC or GTR) is 
calculated as the fraction of time (fraction of samples) the 
MCMC chain visited/spent time/generations sampling within that 
model ...
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Outline: Population Genetics

● What is biological evolution?

● Units & Types of Evolution

● Good old G. Mendel (phenotypes)

● Alleles & SNPs (genotypes)

● Models of evolution for infinite populations (Hardy)

● Models of evolution for finite populations (Wright-Fisher)
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What is Evolution?

● Change over time

● Languages evolve → languages change

● Galaxies evolve → galaxies change

● Political systems change → political systems evolve
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Biological Evolution

● In Biology one more condition, except for change, is required to 
characterize evolution

● Do you know which one?
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Biological Evolution

Change over time

Is this evolution?
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Biological Evolution

Time

population individuals
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Biological Evolution

Time

Generation 0 Generation 1 Generation 2

The frequency of black and white individuals in the population changes over time.

Is this evolution?
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Biological Evolution

Time

Generation 0 Generation 1 Generation 2

The frequency of black and white individuals in the population changes over time.

Is this evolution?

Note that the number of 
individuals remains constant 
here!
We refer to this as 
constant population size
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Biological Evolution

Time

Generation 0 Generation 1 Generation 2

In population genetics, we are interested in how characteristics (e.g., ratio of black versus 
white individuals) of populations change over time. 
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Another Example

● Population of 5 white and 5 black individuals
● frequency(white) = 0.5 

● frequency(black) = 0.5

● Suddenly 7 out of 10 individuals die →  2 white and 1 black left
● frequency(white) = 2/3

● frequency(black) = 1/3

● The population has changed!

● Is this evolution?
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Yet Another Example

● Population of 5 white and 5 black individuals
● frequency(white) = 0.5 

● frequency(black) = 0.5

● 3 individuals (2 white & 1 black) decide to leave and form a new 
colony

● frequency(white) = 2/3

● frequency(black) = 1/3

● The population of the new colony is different!

● Is this evolution?
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Biological Evolution

● The phenomenon of change is not sufficient for defining 
biological change/evolution

● For talking about biological evolution, change needs to be 
inherited

● The reasons for the change are not important for the definition 
of biological evolution

● … but we are of course interested in them!
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Biological Evolution

● Given these examples, by biological evolution we refer to

● Change of the frequency of occurrence of features of 
individuals in the population 

● Features can be, for instance, resistance to antibiotics, color, 
etc.

● These features should be inherited from generation to 
generation

● Key question: What are the mechanisms of feature inheritance?

● We distinguish between phenotype and genotype! 
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The basic Unit of Biological 
Evolution

● Based on the previous examples, what is the biological unit of 
evolution:

● An individual?
● A population?
● Something else?
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Units of Evolution

● The population

● A gene

● The genome of an individual

● One needs to define first at which level evolutionary forces act

→ what competes with what?
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Units of Evolution: The Population

● A Population evolves because the frequency of the

features of its individuals changes

● Features frequency can change due to

1. Genetic Drift: Chance (other than a random mutation)

2. Migration

3. Mutation

4. Natural Selection: Response to some pressure (e.g., antibiotics, climate 
change)

● Features can be:

● Genotype
● Phenotype
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Genetic Drift

Composition of population changes by some random event

Time
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Migration

Population 1 Population 2
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Mutation

parents

offspring

A random mutation may occur that changes the color of the offspring and hence the 
frequency of brown beetles in the population
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Natural Selection

Time

Green Beetles may be easier to 
spot for birds → they will have less
offsprings in the following generations
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Units of Evolution: The Gene

● Genes encode information

● Assume that gene A encodes eye color
● In reality a total of about 15 genes encode eye color

● If A has the form A → color = blue

● If A has the form a → color = brown

● What does form mean?
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Units of Evolution: The Gene

● Genes are inherited from generation → generation

● Inheritance take places via Alleles 

● An Allele is a specific form (slightly different DNA sequence): a or A of gene A

● Most multi-cellular organisms are diploid → they have two sets of 
corresponding chromosomes that are called homologous

● Diploid organisms have one copy of each gene/allele in each of the 
homologous chromosome pairs

● If the Allele sequences in the two chromosomes are identical: 

homozygous

● If the Allele sequences in the two chromosomes are different: 

heterozygous 
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Units of Evolution: The Gene

Diploid Chromosome

Homologous pair of chromosomes
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Units of Evolution: The Gene

Homozygous Allele → identical DNA
Heterozygous Allele→ different DNA sequence
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Fraction of heterozygous Alleles

Ancient DNA Siberia
http://en.wikipedia.org/wiki/Denisova_Cave 

Table from: 
http://genetics.med.harvard.edu/reich/Reich_Lab/Welcome_files/2013_Bryc_Genetics.pdf

http://en.wikipedia.org/wiki/Denisova_Cave
http://genetics.med.harvard.edu/reich/Reich_Lab/Welcome_files/2013_Bryc_Genetics.pdf
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Units of Evolution: The Gene

● Why are we interested in heterozygous versus homozygous 
Alleles? 

● Inheritance →Humans inherit one allele from the father and one 
from the mother  

● Some more terminology:

● Genotype of a gene: the set of corresponding alleles in a 
diploid organism

● Phenotype of a gene: observation for the trait/property that 
the gene controls (e.g. brown eye color) → in reality more 
complex genes interact on traits
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Mendelian Inheritance

Pea plant traits (phenotype!) studied by G. Mendel
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Dominance

● In Mendel's experiment

● An individual with the Round-Wrinkled genotype had the Round 
phenotype, i.e., RW → R

● We say that the round allele is dominant and the wrinkled allele is 
recessive

● What are the phenotypes of:

● RR → ?
● RW → ?
● WR → ?
● WW → ?

● If there is no dominance-recession relationship the phenotype is intermediate!
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Mendel

Homozygous round seed: RR Homozygous wrinkled seed: WW

cross
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Mendel

Homozygous round seed: RR Homozygous wrinkled seed: WW

cross

Generation 1
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Mendel

Homozygous round seed: RR Homozygous wrinkled seed: WW

cross

Generation 1 self-
fertilize
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Mendel

Homozygous round seed: RR Homozygous wrinkled seed: WW

cross

Generation 1 self-
fertilize

What do you expect?
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Mendel

Homozygous round seed: RR Homozygous wrinkled seed: WW

cross

Generation 1 self-
fertilize

5474 1850

Generation 2
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Mendel

Homozygous round seed: RR Homozygous wrinkled seed: WW

cross

Generation 1 self-
fertilize

5474 1850

Generation 2

Conclusion: The traits of the two parent plants 
do not blend (mischen). While Generation 1 
Only shows the trait of one parent, both traits 
are passed to Generation 2 in a 3:1 ratio.



  
80

Mendel's 1st law
The principle of Segregation

Each physical trait of a diploid organism is determined by two

factors (alleles). These two factors separate between the 

generations and re-unite in the next generation.

● Observation: the 2nd  generation shows all traits from the initial 
generation 0 even though the parents in generation 1 do not show all 
traits.

● Conclusion: Generation 1 must receive some information that causes 
this “hidden” trait to be revealed in generation 2, in addition to the traits 
of generation 1.
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Allele Inheritance

● As we know, a diploid organism has 2 alleles per gene

● Alleles can either be heterozygous or homozygous

● One allele is inherited from the mother and one from the father 

→ each parent will pass only one of his – possibly heterozygous 
–  alleles to the offspring

● For a certain, single allele, there is a 50 % chance to have 
obtained it either from the mother or from the father
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Allele Inheritance
Terminology

● We denote a gene with the capital bold-font letter A

● We denote corresponding Alleles by A and a if two alleles exist 
or as A1, A2, A3, … if more than two alleles exist

● A denotes both, an allele, and the corresponding gene which 
may sometimes lead to confusion

● I use bold font A to denote the gene and italic a, A to denote the 
corresponding Allele
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Why do we care about Alleles?

● In population genetics we study the evolution of populations, 
that is: 

● How does the frequency of alleles change over time?
● Why does the frequency change?

● As a consequence we are interested in the evolution of so-
called Polymorphisms

● Polymorphism (Greek): many shapes
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Polymorphism

● Polymorphic gene

● A gene A in the population is polymorphic when there exist 
multiple alleles (e.g. A, a)

● Polymorphic site

● Today, we can sequence the entire DNA of several 
individuals of a population

● After multiple sequence alignment we can observe sites in 
certain genes with more than one state

● Such sites are called polymorphic!
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Population genetics versus 
Phylogenetics

● Evolution at very different scales

● In an alignment of individuals of a single population (species)  
there will be far less mutations than in the phylogeny of 
mammals, for instance!

● Since in population genetics there are so few mutations and 
each mutation is much more important we need to absolutely 
get the alignment right!
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An Alignment Of Individuals

Polymorphic sites
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An Alignment of Species

Boletus is a Fungus
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Polymorphic Sites – SNPs

● In the MSA of the individuals, we observe some sites, that have 
more than one nucleotide state

● Such sites are called Polymorphic sites or more commonly 
SNPs = Single Nucleotide Polymorphisms 

● SNPs is pronounced: Snips

● Modern population genetic analyses mostly operate on SNPs



  
89

Modern Population Genetics

● Study of polymorphisms in a population
● Which processes introduce polymorphisms into the 

population?
● If a polymorphisms exists in a population will it be there for 

ever?
● Is there some process that removes polymorphisms from the 

population?
● Do polymorphisms exhibit patterns?
● …
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A simple Hypothesis & Model

● Question: Does dominance affect the frequency of alleles?
● First tested by the famous mathematician G. Hardy at the beginning of the 20 th century

● Assume 

– infinite population size

– random mating 
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Random Mating
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A simple Hypothesis & Model

● Question: Does dominance affect the frequency of alleles?
● First tested by the famous mathematician G. Hardy at the beginning of the 20 th century

● Assume 

– infinite population size

– random mating 

– A gene A with 2 alleles: A and a

– Current frequencies (at generation 0) of allele pairs defining the genotype

● f0(A) = p

● f0(a) = q 

● Evidently, p + q = 1
● Does the frequency of occurrence of A change over generations? 

● Does the proportion of genotypes AA:Aa:aa change over generations? 
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Hardy-Weinberg Equilibrium

● What happens to the frequencies of two alleles at a single gene 
when the four evolutionary forces (Natural selection, mutation, 
migration, genetic drift) are not acting on a population, and 
where mating is random?

● If allele frequencies are the same between a parental and 
offspring generation →  no evolution has occurred at that gene

● Serves as null hypothesis in evolutionary biology & population 
genetics
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Hardy Weinberg – the Maths

● Assumptions/Definitions (again):

● Population with 2 alleles: A, a

● A is dominant and a is recessive 

● Mating is random

● Population is infinitely large 

● Sexes are evenly distributed between 3 genotypes AA, aa and [Aa or 
aA]

● The ratio of frequencies for the three genotypes 

f(AA) : f(Aa) : f(aa) = x : 2y : z
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● We want to find out how the frequencies of the genotypes and the 
gametes (individual alleles) evolve

● Let’s start with the mating behavior assuming random mating via the 
Punnett square 

Hardy Weinberg – the Maths

AA Aa aa

AA

Aa

aa

f(AA) : f(Aa) : f(aa) = x : 2y : z
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● We want to find out how the frequencies of the genotypes and the 
gametes (individual alleles) evolve

● Let’s start with the mating behavior assuming random mating via the 
Punnett square 

Hardy Weinberg – the Maths

AA Aa aa

AA

Aa

aa

f(AA) : f(Aa) : f(aa) = x : 2y : zx2
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● We want to find out how the frequencies of the genotypes and the 
gametes (individual alleles) evolve

● Let’s start with the mating behavior assuming random mating via the 
Punnett square 

Hardy Weinberg – the Maths

AA Aa aa

AA

Aa

aa

f(AA) : f(Aa) : f(aa) = x : 2y : zx2

f(AA) * f(AA) = x * x
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● We want to find out how the frequencies of the genotypes and the 
gametes (individual alleles) evolve

● Let’s start with the mating behavior assuming random mating via the 
Punnett square 

Hardy Weinberg – the Maths

AA Aa aa

AA

Aa

aa

f(AA) : f(Aa) : f(aa) = x : 2y : zx2

2xy
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● We want to find out how the frequencies of the genotypes and the 
gametes (individual alleles) evolve

● Let’s start with the mating behavior assuming random mating via the 
Punnett square 

Hardy Weinberg – the Maths

AA Aa aa

AA

Aa

aa

f(AA) : f(Aa) : f(aa) = x : 2y : zx2

2xy

zx
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● We want to find out how the frequencies of the genotypes and the 
gametes (individual alleles) evolve

● Let’s start with the mating behavior assuming random mating via the 
Punnett square 

Hardy Weinberg – the Maths

AA Aa aa

AA

Aa

aa

f(AA) : f(Aa) : f(aa) = x : 2y : zx2

2xy

zx

2xy
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● We want to find out how the frequencies of the genotypes and the 
gametes (individual alleles) evolve

● Let’s start with the mating behavior assuming random mating via the 
Punnett square 

Hardy Weinberg – the Maths

AA Aa aa

AA

Aa

aa

f(AA) : f(Aa) : f(aa) = x : 2y : zx2

2xy

zx

2xy

4y2
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● We want to find out how the frequencies of the genotypes and the 
gametes (individual alleles) evolve

● Let’s start with the mating behavior assuming random mating via the 
Punnett square 

Hardy Weinberg – the Maths

AA Aa aa

AA

Aa

aa

f(AA) : f(Aa) : f(aa) = x : 2y : zx2

2xy

zx

2xy

4y2

2yz
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● We want to find out how the frequencies of the genotypes and the 
gametes (individual alleles) evolve

● Let’s start with the mating behavior assuming random mating via the 
Punnett square 

Hardy Weinberg – the Maths

AA Aa aa

AA

Aa

aa

f(AA) : f(Aa) : f(aa) = x : 2y : zx2

2xy

zx

2xy

4y2

2yz

xz
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● We want to find out how the frequencies of the genotypes and the 
gametes (individual alleles) evolve

● Let’s start with the mating behavior assuming random mating via the 
Punnett square 

Hardy Weinberg – the Maths

AA Aa aa

AA

Aa

aa

f(AA) : f(Aa) : f(aa) = x : 2y : zx2

2xy

zx

2xy

4y2

2yz

xz

2yz
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● We want to find out how the frequencies of the genotypes and the 
gametes (individual alleles) evolve

● Let’s start with the mating behavior assuming random mating via the 
Punnett square 

Hardy Weinberg – the Maths

AA Aa aa

AA

Aa

aa

f(AA) : f(Aa) : f(aa) = x : 2y : zx2

2xy

zx

2xy

4y2

2yz

xz

2yz

z2
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● Then, at the next generation f’()

f’(AA) = x2 + xy + xy + y2

Hardy Weinberg – the Maths
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● Then, at the next generation f’()

f’(AA) = x2 + xy + xy + y2

Hardy Weinberg – the Maths
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● Then, at the next generation f’()

f’(AA) = x2 + xy + xy + y2

Hardy Weinberg – the Maths
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Crossing AA with Aa will yield 
AA or Aa with equal probability!
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● Then, at the next generation f’()

f’(AA) = x2 + xy + xy + y2

Hardy Weinberg – the Maths
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AA or aa or Aa or aA with 
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● Then, at the next generation f’()

f’(AA) = x2 + xy + xy + y2

f’(Aa) = … = 2(y+z)(x+y)

f’(aa) = … = (y+z)2

Hardy Weinberg – the Maths
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● Then, at the next generation f’()

f’(AA) = x2 + xy + xy + y2

f’(Aa) = … = 2(y+z)(x+y)

f’(aa) = … = (y+z)2

● Thus, the ratio now is: 

f’(AA) : f’(Aa) : f’(aa) = (x+y)2 : 2(x+y)(y+z) : (y+z)2 = x1 : 2y1 : z1

Hardy Weinberg – the Maths
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● Then, at the next generation f’()

f’(AA) = x2 + xy + xy + y2

f’(Aa) = … = 2(y+z)(x+y)

f’(aa) = … = (y+z)2

● Thus, the ratio now is: 

f’(AA) : f’(Aa) : f’(aa) = (x+y)2 : 2(x+y)(y+z) : (y+z)2 = x1 : 2y1 : z1

● The ratio between the genotypes remains unaltered between 
generations when the following holds:

● (x+y)2 = x and 2(x+y)(y+z) = 2y
● Remember that the original ratio at generation 0 was defined as 

x : 2y : z 

and that the equality of z to (y+z)2 follows because x + 2y + z = 1 ! 

Hardy Weinberg – the Maths
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● Let’s look at deducing (x+y)2 = x

x2 + 2xy + y2 = x → x (x + y) + y (x + y) = x → y (x + y) = x (1 – x - y) 

→ y (x + y) = x (y + z) [remember x+2y+z = 1 !] 

Hardy Weinberg – the Maths
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● Let’s look at deducing (x+y)2 = x

x2 + 2xy + y2 = x → x (x + y) + y (x + y) = x → y (x + y) = x (1 – x - y) 

→ y (x + y) = x (y + z) [remember x+2y+z = 1 !] → 

xy + y2 = xy + xz 

Hardy Weinberg – the Maths
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● Let’s look at deducing (x+y)2 = x

x2 + 2xy + y2 = x → x (x + y) + y (x + y) = x → y (x + y) = x (1 – x - y) 

→ y (x + y) = x (y + z) [remember x+2y+z = 1 !] → 

xy + y2 = xy + xz → y2 = xz 

Hardy Weinberg – the Maths
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● Let’s look at deducing (x+y)2 = x

x2 + 2xy + y2 = x → x (x + y) + y (x + y) = x → y (x + y) = x (1 – x - y) 

→ y (x + y) = x (y + z) [remember x+2y+z = 1 !] → 

xy + y2 = xy + xz → y2 = xz

● Obviously, this holds for the frequencies after the first generation. 

Remember 

f’(AA) = (x+y)2 ← this is our x above

f’(Aa) = 2(y+z)(x+y) ← this is our y above

f’(aa) = (y+z)2 ← this is our z above

● Thus, genotypic frequencies will remain constant FROM the first 
generation. 

Hardy Weinberg – the Maths
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● Let’s look at the gametic frequencies now

● At generation 0 (remember: f(AA) : f(Aa) : f(aa) = x : 2y : z) they are: 

f(A) = x + y 

f(a) = y + z

● At generation 1 they are: 

f’(A) = (x+y)2 + (x+y)(y+z) = x + y

f’(a) = … = y + z

remember

f’(AA) = x2 + xy + xy + y2

f’(Aa) = … = 2(y+z)(x+y)

f’(aa) = … = (y+z)2

Hardy Weinberg – the Maths
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● Let’s look at the gametic frequencies now

● At generation 0 (remember: f(AA) : f(Aa) : f(aa) = x : 2y : z) they are: 

f(A) = x + y 

f(a) = y + z

● At generation 1 they are: 

f’(A) = (x+y)2 + (x+y)(y+z) = x + y

f’(a) = … = y + z

● Thus, allelic frequencies will remain constant even from generation 0 
onwards! 

Hardy Weinberg – the Maths
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Effects of finite Population Size
Random Genetic Drift

● Populations are of finite size!
● Does this affect the evolution of allele frequencies over 

generations?
● Assume: 

– there are N individuals in a diploid population→ 2N 
chromosomes

– Frequency of A allele is p
● What will be the frequency of A in the next generation?
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Random Genetic Drift

● Definition: 

Genetic drift is a random process that causes changes in allele 
frequencies from one generation to the next. Some alleles will 
be passed on to the next generation disproportionally without 
being advantageous or harmful. Especially in small populations 
genetic drift is strong due to sampling errors. Alleles can be 
fixed or get lost by chance.
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The Wright-Fisher Model
for finite populations

● Assume a diploid population:

● Population size: N (2N chromosomes)

● Random mating
● Non-overlapping generations → something like discrete time 

steps from generation to generation (e.g., annual plants)

● No natural selection
● Equal distribution of sexes

● The Wright-Fisher model is the simplest model of evolution for a 
population of finite size
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Wright-Fisher Rules/Simulation
Example

● We assume a constant population → say 10 individuals (or 5 
diploid individuals) per generation

● Each individual from the offspring generation picks a parent at 
random from the previous generation 

→ all parents have equal probability to be picked

→ a parent can be picked more than once

● Each offspring inherits the genetic information of the parent

● The process and maths are easier to understand if we forget 
about alleles for a second and just think about individuals
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Wright-Fisher

Gen 0
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Wright-Fisher
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Gen 1

time
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Wright-Fisher

Gen 0

Gen 1

time

offsprings

parents
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Wright-Fisher

Gen 0

Gen 1

time

Gen 2
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Wright-Fisher
Binomial Random Sampling

● The probability to pick an individual X as ancestor of an individual in the next 
generation is p = 1/2N

● If the population remains constant then you have to sample 2N (2N = 10 in our 
example) times from the current generation to construct the next generation with 2N 
offsprings

● For every sample, the probability to pick X remains constant at p → by definition of 
our model

● The number of offsprings for X follows a binomial distribution, thus the probability to 
pick X as an ancestor k times is 

● Where p := 1/2N and n := 2N 
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Binomial Random Sampling

● The probability to pick an allele A as ancestor of an individual in the next generation 
is p = #A/2N

● If the population remains constant then you have to sample 2N (2N = 10 in our 
example) times from the current generation to construct the next generation with 2N 
offsprings

● For every sample, the probability to pick A remains constant at p → by definition of 
our model

● The number of offsprings for A follows a binomial distribution, thus the probability to 
pick A as an ancestor k times is 

● Where p := #A/2N and n := 2N 
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Binomial Sampling of Alleles

Binomial distributions for frequency of allele A in the next generation for p=f(A)=0.4 and 
p=f(A)=0.2 and a population size of 2N = 10 
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Mean and Variance of Allelic 
Frequency due to drift 

● From the properties of the binomial distribution we obtain

● E(#A) = 2N * p
● Var(#A) = 2N * p * (1 - p)
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The evolution of the frequency of A 
as a Markov Chain

● The evolution of the frequency of A over generations is a 
stochastic process!

● Even if we know everything about the population we cannot 
predict the state at the next generation with certainty

● One important property of the process: the next state depends 
only on the current state

→ The process can be modeled as a Markov Chain
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Transition Probabilities
Wright-Fisher

Frequency in next generation t+1 Frequency in current generation t

Population size 2N haploid
or N diploid organisms

Probability of changing from i alleles
in generation t to j alleles in 
generation t+1
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Example

● Prob of change from i = 4 → j = 8 Alleles of same type for a 
population of size 2N := 10 from one generation to the next
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Wright-Fisher Model

● A state of a Markov process is called absorbing when the 
probability to exit this state once we have entered it is 0.

● Are there absorbing states in the Wright-Fisher model?
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Probability to enter an absorbing 
state

● Useful to study the evolution in a Wright-Fisher model as a Markov 
Chain because you can answer a lot of questions via standard 
Markov Chain theory. 

● For instance: What is the probability that the population will end up 
(after how many generations?) in the absorbing state where f(A)=1?

→ this is also called fixation

● Given that the frequency of A is #A/2N, the probability that A will 
become fixed is #A/2N

● For details, see:
http://people.sc.fsu.edu/~pbeerli/isc5317-notes/pdfs/01-populationmo
dels.pdf
  

http://people.sc.fsu.edu/~pbeerli/isc5317-notes/pdfs/01-populationmodels.pdf
http://people.sc.fsu.edu/~pbeerli/isc5317-notes/pdfs/01-populationmodels.pdf
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Random genetic Drift

● The change in allele frequencies over generations in finite 
populations due to stochasticity (re-sampling) is called random 
genetic drift

● What is the effect of random genetic drift on the polymorphism 
level?

● Since our human population is finite, why do we still observe 
polymorphisms?
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Heterozygosity and Genetic Drift

● Reduction of polymorphism is quantified by the degree of homozygosity → The 
probability that two alleles are identical

→ heterozygosity = (1 – homozigosity) at generation t is defined as: Hett

● Assume a population of size 2N

● We can define the heterozygosity recursively as Hett = Het(t-1) (1 – 1/2N)

● Thereby we obtain: Hett = Het0 (1 - 1/2N)t

Probability that two randomly 
chosen Alleles are different



  
138

Genetic Drift
Initial allele frequency
f(A) = 0.5
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Mutation-Drift Balance

● Genetic drift removes polymorphisms (SNPs) from the 
population

● Mutations introduce polymorphism (SNPs) into the population

● Is there some balance?
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Heterozygosity at 
mutation – drift balance

● Define:

● Het: heterozygosity

● -1/2N * Het: Loss of heterozygosity per generation due to genetic drift

● μ: mutation rate per gene (remember two alleles per gene!) and per generation

● 2μ(1 – Het): gain of heterozygosity due to mutation

● Pick two alleles

● Consider transition from generation t → t + 1 

● The probability that they are identical is: (1-Het)

● If they are identical, the probability that one out of the two will mutate is 2μ

→ 2μ(1 – Het) gain in heterozygosity due to mutation

● Overall: Hett+1 = Hett – 1/2N * Hett + 2μ (1-Hett)

ΔΗet = -1/2N * Hett + 2μ(1-Hett)

● ΔΗet = 0 → Het = (4μN) / (1 + 4μN)
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Rate of Evolution by mutation and
genetic drift

● Rate of Evolution = The probability of a new mutation to arise in 
the population and to eventually become fixed

● Assume
● μ is the probability of mutation per generation and per individual

● 2N individuals → 2Nμ mutations per generation

● The probability that a particular mutation will be fixed is 1/2N

● Thus, the rate at which a mutation will arise and fix in the 
population is 1/2N * 2Nμ = μ

● Why is this result remarkable?
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Natural Selection

● So far, we have assumed that the probabilities of fitness and 
reproduction are the same for each individual, independently of 
its genotype

● Consequently, a random individual at generation t+1 descends 
from any individual in generation t, with the same probability

● We denote the ability of an individual “to survive and reproduce” 
as fitness

● We assume that fitness depends on the genotype
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Natural Selection

● The term selection means that a genotype reproduces more 
frequently than others

● If a certain genotype, e.g., AA has better/higher fitness

→ it will fix in the population after several generations

→ consequently, the allele A will also fix

● We say: Natural selection has favored allele A

● In this case, the natural selection on A is termed Positive 
Selection
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Different Modes of Selection
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The Frequency Evolution of A
under Positive Selection

Random 
genetic drift

Positive selection
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Summary Statistics

● Summary statistics provide a summarized description of the dataset, e.g., the 
number of polymorphic sites

● Summary statistics are important because:

● They allow to estimate parameters of the population
● They help us to assess if positive selection occurred

● Differences to phylogenetics

● Given the data (MSA of individuals)
● We don't reconstruct a population tree for the individuals
● We simulate evolution under different scenarios (including more complex 

models with changing population sizes etc)
● Then we compare if one of the scenarios fits the summary statistics (e.g. # 

SNPs) of our empirical dataset
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