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DNA and protein sequences 
are strings

● DNA:                                             AACCTGTTGTCAAATG

● Protein:                                  TTETTSFLIFETAVKNT

 



  

Sequences evolve

A C G T A C C C G      ← generation 1



  

Sequences evolve

A C G T A C C C     G ← generation 1

A T G T   C C C T A G ← generation 2

(and their lengths change)

insertiondeletionsubstitution



  

Pair-wise sequence alignment

Compare two sequences to infer their similarity

Example: alignment between ‘GCGACGTCC’ 
and ‘GCGATAC’



  

Example 1: Measure DNA similarity

How similar are human and 
chimpanzee at  the DNA level?

Human DNA

Chimpanzee DNA



  

Example 1: Measure DNA similarity

How similar are human and 
chimpanzee at  the DNA level?

Human DNA

Chimpanzee DNA

We first need to align their DNA sequences!

(now nucleotids at the same position are comparable)



  

Example 2: genome assembly

Individual to sequence

Sequencing machine

Unordered reads 
(short DNA sequences)

Assembled genome



  

Example 2: genome assembly

Reference genome

Reads to map



  

Global and local alignments

Local alignment: align similar substrings

Global alignment: align the full strings



  

Dynamic programming

● Break down a complicated problem into  
simpler subproblems (typically with recursion)

● Cache the results of the recursive calls



  

Dynamic programming

Break down a complicated problem into  
simpler subproblems (typically with recursion)

Example:

Tower of Hanoi algorithm 



  

Distance

● A function d is a distance if the following 
conditions are satisfied for all element x and y:
– Positivity: d(x,y) >= 0
– Separation: d(x,y) = 0  <=> x = y
– Symmetry: d(x,y) = d(y,x)
– Triangle inequality: d(x,y) <= d(x,z) + d(z,y) for all 

elements z

x y

z

d(x,y)



  

Hamming distance

● Defined for strings of same length
● Counts the number of characters that differ
● Linear complexity

PING       HAMMING     ACGTTGGGTT
PONG       LEMMING     ACGATGCATT   
d = 1                   d = 2                      d = 3



  

Is hamming biologically relevant?

X = ACTATATATACG
Y = CTATATATACGT

d = 12, the distance between X and Y is maximal

                                                                                    



  

Is hamming biologically relevant?

X = ACTATATATACG
Y = CTATATATACGT

d = 12, the distance between X and Y is maximal

… but X and Y are very similar!

X = ACTATATATACG-
Y = -CTATATATACGT

(Hamming distance is actually relevant, but not to 

compare “raw” sequences)



  

Edit operations:
substitution, insertion and deletion
 

Substition of one letter x by another letter y

A  C  G  T  G C

A  C  G  A  G C



  

Edit operations:
substitution, insertion and deletion
 

Insertion of one letter

A  C  G  –  G C

A  C  G  A  G C



  

Edit operations:
substitution, insertion and deletion
 

Deletion of one letter 

A  C  G  T  G C

A  C  G  –  G C



  

Edit distance

δe(x,y) = minimum number of (edits) operations 
to transform x into y



  

Edit distance

Example: compute the edit distance between 

“SALADS” and “BALLAD”



  

Edit distance

Example: compute the edit distance between 

“SALADS” and “BALLAD”

SALADS → BALADS         Subs S → B

BALADS → BALLADS       Insert L

BALLADS → BALLAD       Del S

Edit distance = 3



  

Alignment definition

Result of inserting gaps in both strings such that they 
have the same length

Alignments between                   

x=‘ACGA’ and y=‘ATGCTA’:      

ACGA--       A------CGA     A--CGA  
ATGCTA       -ATGCTA--      ATGCTA



  

What is a good alignment?

We can (for instance) score an alignment with the

hamming distance.

ACGA--      A------CGA     A--CGA  
ATGCTA      -ATGCTA---     ATGCTA
 d=4           d=10          d=3
   



  

Aligning sequences using edit 
distance

S A L - A D S

B A L L A D -

Computing the alignment with 
minimum hamming distance 

Computing the edit distance and 
storing the sequence of edit 

operations
=

subst insert delete

hamming(SAL-ADS,BALLAD-) = edit(SALADS, BALLAD)



  

How to compute the edit distance between

two strings X and Y?



  

For instance, how to compute the distance

between poney and monkey?



  

Naive bruteforce

For each distance from 1 to |X|, try every 
possible combinations of edit operations



  

Naive bruteforce

First iteration:

m-nkey

monkey pmonkey omonkey nmonkey   etc.
mponkey moonkey mnonkey   etc.
etc.

ponkey oonkey nonkey      etc.
mpnkey mknkey mnnkey   etc.
etc.

del

insert

subst

-onkey

mo-key
etc.



  

Naive bruteforce

Second iteration: repeat the same procedure 
from each output of the previous iteration

→ Non-polynomial time complexity (with 
respect to |X| and |Y|)



  

Dynamic programming

Recursion on the prefixes of X and Y

We need:
● A recursion formula
● Trivial edge case to end the recursion 



  

Edge case

δe(X, ε) = |X|     (delete all letters of X) 

δe(ε, Y) = |Y|     (insert all letters of Y) 



  

Dynamic programming

Recursion on the prefixes of x and y

We need:
● A recursion formula
● Trivial edge case to end the recursion 



  

Levenstein formula

Let F(i,j) be the edit distance between the prefixes 
of X of size i and the prefix of Y of size j.
  
F(i,j) =   min (

F(i, j – 1) + 1,
F(i – 1, j) + 1,
F(i – 1, j – 1) + 1 * (X[i] != Y[j]) 

) 
     



  

Levenstein formula

δe(monkey,poney) = min (
δe(monkey,pone) + 1,
δe(monke,poney) + 1,
δe(monke,pone) + 1 * (y != y)

)



  

First term

Insertionrecursion

      monkey →... → pone → poney

δe(monkey,pone) + 1

F(i, j – 1) + 1



  

Second term

deletion recursion

monkey → monke→... → poney

δe(monke,poney) + 1

F(i - 1, j) + 1



  

Third term

substitution?recursion

monke(y) →… → pone(y) → poney

δe(monke,pone) + 0

F(i - 1, j – 1) + 1 * (X[i] != Y[j])



  

Take the best of the three paths

                             pone

monkey                monke            poney  
                     poney

recursion

del(y)

recursion

ins(y)

recursion

subst(y,y)



  

When to stop?

Stop the recursion when one prefix is empty:

F(0, j) = j

F(i, 0) = i

remember: δe(X, ε) = |X| = δe(ε, X) 



  

Levenstein formula
recursion convergence

F(i,j) =   min (  F(i, j – 1) + 1,
  F(i – 1, j) + 1,
  F(i – 1, j – 1) + 1 * (X[i] != Y[j]) )

The quantity (i+j) decreases at each step, until i=0 or j=0, which ends the recursion 



  

Let’s have a look at 
the functions calls

                    δ(‘ABC’, ‘ABE’)

δ(‘ABC’, ‘AB’)  δ(‘AB’, ‘ABE’)  δ(‘AB’, ‘AB’)



  

Naive implementation
→ exponential complexity

                    δ(‘ABC’, ‘ABE’)

δ(‘ABC’, ‘AB’)  δ(‘AB’, ‘ABE’)  δ(‘AB’, ‘AB’)

δ(‘A’, ‘ABE’) δ(‘AB’, ‘AB’) δ(‘A’, ‘AB’)

δ(‘AB’, ‘A’) δ(‘A’, ‘AB’) δ(‘A’, ‘A’)



  

Redundant computations !

                    δ(‘ABC’, ‘ABE’)

δ(‘ABC’, ‘AB’)  δ(‘AB’, ‘ABE’)  δ(‘AB’, ‘AB’)

δ(‘A’, ‘ABE’) δ(‘AB’, ‘AB’) δ(‘A’, ‘AB’)

δ(‘AB’, ‘A’) δ(‘A’, ‘AB’) δ(‘A’, ‘A’)



  

Dynamic programming

Be careful not to blindly implement the recursion! 

Store intermediate results in a table to avoid 
redundant computations



  

Needleman-Wunsch algorithm

→ Computes the edit distance

→ Finds the best alignment 

Stores intermediate results in a table to save 
computations



  

Needleman-Wunsch algorithm

M O N K E Y

M

O

N

E

Y

Store in a table T the edit distance between all the 
possible prefixes. 

T[4][4] = Edit distance between MONE and MONK 



  

Needleman-Wunsch algorithm

M O N K E Y

M

O

N

E

Y

Edit distance between x=money and y=monkey 
with dynamic programming

Let’s compute T:



  

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1

O 2

N 3

E 4

Y 5

Initialization of first raw and first column: trivial.
Rationale: δe(X, ε) = |X| = δe(ε, X)

T[0][3] = Edit distance between ε and MON = 3



  

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 ??

O 2

N 3

E 4

Y 5

Fill the rest of the table :
T[i][j] = min( T[i-1][j] + 1,                   1 + 1 = 2 
                    T[i][j-1] + 1,                   1 + 1 = 2
                    T[i-1][j-1]) + subst(i,j))   0 + 0 = 0



  

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0

O 2

N 3

E 4

Y 5

Fill the rest of the table :
T[i][j] = min( T[i-1][j] + 1,                   1 + 1 = 2 
                    T[i][j-1] + 1,                   1 + 1 = 2
                    T[i-1][j-1]) + subst(i,j))   0 + 0 = 0



  

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0

O 2

N 3

E 4

Y 5

After filling a cell, keep track of the best path

Diagonal path: substitution M→M 



  

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 ??

O 2

N 3

E 4

Y 5

T[i][j] = min( T[i-1][j] + 1,                   0 + 1 = 1 
                    T[i][j-1] + 1,                   2 + 1 = 3
                    T[i-1][j-1]) + subst(i,j))   1 + 1 = 2



  

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1

O 2

N 3

E 4

Y 5

T[i][j] = min( T[i-1][j] + 1,                   0 + 1 = 1 
                    T[i][j-1] + 1,                   2 + 1 = 3
                    T[i-1][j-1]) + subst(i,j))   1 + 1 = 2



  

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1

O 2

N 3

E 4

Y 5

After filling a cell, keep track of the best path

Horizontal path: insertion of ‘O’ 



  

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2

O 2

N 3

E 4

Y 5

Iterate...



  

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2

N 3

E 4

Y 5

Iterate...



  

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 ??

N 3

E 4

Y 5

T[i][j] = min( T[i-1][j] + 1,                   2 + 1 = 3 
                    T[i][j-1] + 1,                   0 + 1 = 1
                    T[i-1][j-1]) + subst(i,j))   1 + 1 = 2



  

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1

N 3

E 4

Y 5

T[i][j] = min( T[i-1][j] + 1,                   2 + 1 = 3 
                    T[i][j-1] + 1,                   0 + 1 = 1
                    T[i-1][j-1]) + subst(i,j))   1 + 1 = 2



  

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1

N 3

E 4

Y 5

After filling a cell, keep track of the best path

Vertical path: deletion of ‘O’ 



  

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0

N 3

E 4

Y 5

Iterate...



  

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1

Y 5

Iterate...



  

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2

Iterate...



  

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2 ??

T[i][j] = min( T[i-1][j] + 1,                   2 + 1 = 3 
                    T[i][j-1] + 1,                   1 + 1 = 2
                    T[i-1][j-1]) + subst(i,j))   1 + 1 = 2



  

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2 2

Sometimes, there are several best paths

Ambiguity!



  

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2 2 2 1

Edit distance between monkey and money = 1



  

Backtrace the best alignment

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2 2 2 1

Follow the lines!            
                                     



  

Backtrace the best alignment

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2 2 2 1

● Vertical line:     deletion  
● Horizontal line: insertion
● Diagonal line:   substitution

M O N  - E Y
M O N K E Y



  

Recap: Needleman-Wunsch 
algorithm

● Initialize first row and first column

M O N K E Y

0 1 2 3 4 5 6

M 1

O 2

N 3

E 4

Y 5



  

Recap: Needleman-Wunsch 
algorithm

● Initialize first row and first column
● Fill each element with the minimum of the three 

previous values. Store the best path.

M O N K E Y

0 1 2 3 4 5 6

M 1

O 2

N 3

E 4

Y 5

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 ?

Y 5



  

Recap: Needleman-Wunsch 
algorithm

● Initialize first row and first column
● Fill each element with the minimum of the three 

previous values. Store the best path.
● Backtrace to get the chain of operations

M O N K E Y

0 1 2 3 4 5 6

M 1

O 2

N 3

E 4

Y 5

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 ?

Y 5

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2 2 2 1



  

Let n=|X| and m=|Y|. What is the complexity of 
the Needleman-Wunsch algorithm?

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2 2 2 1



  

Complexity

● Most expensive step: filling the table
● O(n * m) where n = |X| and m = |Y|

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2 2 2 1



  

Complexity

● Most expensive step: filling the table
● O(n * m) where n = |X| and m = |Y|
● Much quicker than naive recursion or 

bruteforce!
M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2 2 2 1



  

Ambiguities



  

Should we really assign the same cost to 
substitutions, deletions and insertions?

                                                                     

 

 



  

Should we really assign the same cost to 
substitutions, deletions and insertions?

→ No, there is not reason to think that these 
events are equally likely. 



  

Adding weights

● We can penalize some less likely operations with weights.

Example: assume that substitutions happen 5 times more often than additions 
and deletions:

 F(i,j) =   min (

                      F(i, j – 1) + 5,

                         F(i – 1, j) + 5,

                         F(i – 1, j – 1) + 1 * (X[i] != Y[j]) 

                         )



  

Remark

If the insertion and deletion costs are different, 
the edit distance is not a distance anymore:

The symetry d(X,Y) = d(Y,X)

is not respected anymore



  

In coding genes, what could make an insertion 
less likely than a substitution?

(coding genes code for a protein)  



  

Insertion VS substitution in coding 
genes

Insertions are less likely to produce a fit organism

● Insertion of a non-multiple of three number of nucletids → 
shift the whole sequence!

TTT  CCC  AAA  GGG → TAT  TCC  CAA  AGG 

● Some nucleotid substitutions are silent. For instance, TTT 
and TTC both code for the same amino acid Lys 



  

What is the ratio between 
subsitutions and 

insertions/deletions?

It depends! 
● Type of organism
● Coding/non coding genes
● Etc.



  

What kind of alignment problem did we solve 
with the Needleman-Wunsch algorithm?



  

Answer: global alignment

● Needleman-Wunsch gives us the best 
sequence of operations to get Y from X.

● This corresponds to the best global alignment.



  

Local alignment

Input: two strings X and Y

Output: two aligned substrings 



  

Local alignment problem

Example: TTTACCACAACT and 
GACCATCAACGGGG  

T T T A C C A - C A A C T
    G A C C A T C A A C G G G G



  

Formulate local alignment problem
with distances

“Find the substrings with minimum distance”

Issue: distances increase with the lengths of the 
strings. Short strings will be selected

δe(ACCACAAC, ACCATCAAC) = 1

δe(ACCA, ACCA) = 0



  

Similarity functions

● Assign positive and negative weights, to favor 
similarities  
– Insertion, deletion, non-identity substitution have a 

negative weight     
– Identity substitution has a positive weight

Similarity functions are NOT distances. They do not 
verify:

Positivity: s(x,y) >= 0

 



  

Formulate local alignment problem
with similarities

“Find the substrings with maximum similarity”

S(ACCACAAC, ACCATCAAC) = 8 – 1 = 7

S(ACCA, ACCA) = 4



  

Local alignment problem

Find the two substrings of X and Y with the 
maximal similarity.



  

Smith-Waterman algorithm
to solve local alignment

Same as Needleman-Wunsch algorithm, but:

● Use a similarity function for the Levenstein formula
● Negative values are set to 0. 
● Initialize first row and column with 0.
● Find the largest value in the table and traceback 

until a 0 is reached.



  

Align EAWACQGKL and ERDAWCQPGKWY



  

Gap penalties

One large deletion is more likely than many 
small deletions:

GAAAAAT       GAAAAAT
GAA---T       G-A-A-T

→different scores for gap-start and gap-
extension



  

Substitution matrices

● Are all substitution equally likely?

● Is a nucleotid A more likely to be 
replaced with a G or a T?

                                                       
                                                       
 



  

Substitution matrices

● Are all substitution equally likely?

No!

● Is a nucleotid A more likely to be 
replaced with a G or a T?

Yes!                                                 
                                                       
        



  

Substitution matrices

For instance, transitions (A↔G 
and C↔T) happen more often 
than transversions

                                                      
                                                      
   



  

Substitution matrices

● The substitutions costs in our alignment 
algorithms should take these rates into 
account:

subst(A,G) < subst(A,C)   

 
●   F(i,j) = min (    F(i, j - 1) + ins(b),

        F(i – 1, j) + del(a),

        F(i – 1, j - 1)  + subst(a,b))



  

Substitution matrices

A substitution matrix describes the rate at which 
one character in a sequence changes to other 
character states over the time.

Example of a DNA 
substitution matrix



  

Substitution matrices

Substitution matrices are crucial to build reliable 
alignments!



  

Key points of the lecture
(exam-relevant!)

● Local VS global alignment
● Hamming/Edit distances, similarity functions
● Needleman-Wunsch algorithm (and variations):

– Write the recursion formula 
– Fill a dynamic programming table 
– Backtrace to build the alignment

● Substitution matrices, gap penalties



  

Questions, feedback?

lukas.huebner@h-its.org
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