Introduction to Bioinformatics for Computer Scientists

Lecture 3
Pair-wise Sequence Alignment

Lukas Hübner, PhD student lukas.huebner@h-its.org
slides by
Benoit Morel, postdoc

DNA and protein sequences are strings

- DNA:
- Protein:

AACCTGTTGTCAAATG

TTETTSFLIFETAVKNT

Sequences evolve

ACGTACCDG \quad C generation 1

Sequences evolve

A C G T A C C C $\quad \mathbf{G} \leftarrow$ generation 1

(and their lengths change)

Pair-wise sequence alignment

Compare two sequences to infer their similarity

Example: alignment between 'GCGACGTCC’ and 'GCGATAC'

$x=$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G | C | G | A | C | G | T | C | C |
| | \mid | \mid | \mid | \mid | | | \mid | . |
| \mid | G | C | G | A | - | - | T | A |
| C | | | | | | | | |

Example 1: Measure DNA similarity

How similar are human and chimpanzee at the DNA level?

Human DNA

Chimpanzee DNA

Example 1: Measure DNA similarity

How similar are human and chimpanzee at the DNA level?

We first need to align their DNA sequences!

(now nucleotids at the same position are comparable)

Example 2: genome assembly

Individual to sequence

Sequencing machine

Assembled genome

Example 2: genome assembly

Reference genome

Reads to map

Global and local alignments

Global alignment: align the full strings

Local alignment: align similar substrings

Dynamic programming

- Break down a complicated problem into simpler subproblems (typically with recursion)
- Cache the results of the recursive calls

Dynamic programming

Break down a complicated problem into simpler subproblems (typically with recursion)

Example:
Tower of Hanoi algorithm

Distance

- A function d is a distance if the following conditions are satisfied for all element x and y :
- Positivity: $d(x, y)>=0$
- Separation: $d(x, y)=0<=>x=y$
- Symmetry: $d(x, y)=d(y, x)$
- Triangle inequality: $d(x, y)<=d(x, z)+d(z, y)$ for all elements z

Hamming distance

- Defined for strings of same length
- Counts the number of characters that differ
- Linear complexity

PING
PONG
$d=1$

HAMMING
LEMMING
$d=2$

ACGTTGGGTT
ACGATGCATT
$d=3$

Is hamming biologically relevant?

```
X = ACTATATATACG
Y = CTATATATACGT
\(\mathrm{d}=12\), the distance between \(\mathbf{x}\) and \(\mathbf{Y}\) is maximal
```


Is hamming biologically relevant?

```
X = ACTATATATACG
Y = CTATATATACGT
\(\mathrm{d}=12\), the distance between \(\mathbf{x}\) and \(\mathbf{Y}\) is maximal
```

... but \mathbf{x} and \mathbf{Y} are very similar!
$\mathbf{X}=$ ACTATATATACG-
$\mathbf{Y}=-C T A T A T A T A C G T$
(Hamming distance is actually relevant, but not to
compare "raw" sequences)

Edit operations: substitution, insertion and deletion

Substition of one letter x by another letter y

$$
\begin{gathered}
A C G T G C \\
\\
\\
A C G A G C
\end{gathered}
$$

Edit operations:

 substitution, insertion and deletionInsertion of one letter

$$
\begin{aligned}
& A C G-G C \\
& A C G A G C
\end{aligned}
$$

Edit operations:

 substitution, insertion and deletionDeletion of one letter

$$
\begin{array}{ll}
A C G T G C \\
& \\
\end{array}
$$

$$
A C G-G C
$$

Edit distance

$\delta e(x, y)=\underline{\text { minimum }}$ number of (edits) operations to transform x into y

Edit distance

Example: compute the edit distance between "SALADS" and "BALLAD"

Edit distance

Example: compute the edit distance between "SALADS" and "BALLAD"

SALADS \rightarrow BALADS Subs $S \rightarrow B$
BALADS \rightarrow BALLADS Insert L
BALLADS \rightarrow BALLAD Del S

Edit distance $=3$

Alignment definition

Result of inserting gaps in both strings such that they have the same length

Alignments between
$x=‘ A C G A ’$ and $y=$ 'ATGCTA':

ACGA--
ATGCTA

A-----CGA
-ATGCTA--

A--CGA
ATGCTA

What is a good alignment?

We can (for instance) score an alignment with the hamming distance.

ACGA--	A------CGA	A--CGA
ATGCTA	- ATGCTA---	ATGCTA
$d=4$	$d=10$	$d=3$

Aligning sequences using edit distance

Computing the alignment with minimum hamming distance

Computing the edit distance and storing the sequence of edit operations

How to compute the edit distance between two strings X and Y ?

For instance, how to compute the distance between poney and monkey?

Naive bruteforce

For each distance from 1 to |X|, try every possible combinations of edit operations

Naive bruteforce

First iteration:

Naive bruteforce

Second iteration: repeat the same procedure from each output of the previous iteration
\rightarrow Non-polynomial time complexity (with respect to $|\mathrm{X}|$ and $|\mathrm{Y}|$)

Dynamic programming

Recursion on the prefixes of X and Y

We need:

- A recursion formula
- Trivial edge case to end the recursion

Edge case

$\delta e(\mathbf{X}, \boldsymbol{\varepsilon})=|\mathbf{X}| \quad$ (delete all letters of $\mathbf{X})$
$\delta e(\boldsymbol{\varepsilon}, \mathrm{Y})=|\mathbf{Y}| \quad$ (insert all letters of $\mathbf{Y})$

Dynamic programming

Recursion on the prefixes of x and y

We need:

- A recursion formula
- Trivial edge case to end the recursion

Levenstein formula

Let $F(\mathrm{i}, \mathrm{j})$ be the edit distance between the prefixes of X of size i and the prefix of Y of size j.
$F(i, j)=\min ($

$$
\begin{aligned}
& F(i, j-1)+1, \\
& F(i-1, j)+1, \\
& F(i-1, j-1)+1 *(X[i]!=Y[j])
\end{aligned}
$$

)

Levenstein formula

סe(monkey, poney) $=\min ($
סe(monkey,pone) + 1 , סe(monke,poney) +1 , סe(monke,pone) + 1 * (y != y)
)

First term

recursion
 Insertion
 monkey $\rightarrow \ldots \rightarrow$ pone \rightarrow poney

סe(monkey,pone) + 1

$$
F(i, j-1)+1
$$

Second term

deletion
 recursion
 monkey \rightarrow monke $\rightarrow \ldots \rightarrow$ poney

סe(monke,poney) + 1
$F(i-1, j)+1$

Third term

recursion
 substitution?
 monke $(y) \leftrightarrow \ldots \rightarrow$ pone $(y) \rightarrow$ poney

סe(monke,pone) + 0

$$
F(i-1, j-1)+1 \text { * }(X[i]!=Y[j])
$$

Take the best of the three paths

When to stop?

Stop the recursion when one prefix is empty:
$F(0, j)=j$
$F(i, 0)=i$
remember: $\delta \mathrm{e}(\mathbf{X}, \varepsilon)=|\mathbf{X}|=\delta e(\varepsilon, \mathbf{X})$

Levenstein formula recursion convergence

$$
\begin{aligned}
F(i, j)=\min & (F(i, j-1)+1, \\
& F(i-1, j)+1, \\
& F(i-1, j-1)+1 *(X[i]!=Y[j]))
\end{aligned}
$$

The quantity ($\mathrm{i}+\mathrm{j}$) decreases at each step, until $\mathrm{i}=0$ or $\mathrm{j}=0$, which ends the recursion

Let's have a look at the functions calls

Naive implementation \rightarrow exponential complexity

Redundant computations!

Dynamic programming

Be careful not to blindly implement the recursion!

Store intermediate results in a table to avoid redundant computations

Needleman-Wunsch algorithm

\rightarrow Computes the edit distance
\rightarrow Finds the best alignment

Stores intermediate results in a table to save computations

Needleman-Wunsch algorithm

Store in a table T the edit distance between all the possible prefixes.

T[4][4] = Edit distance between MONE and MONK

Needleman-Wunsch algorithm

Edit distance between $x=$ money and $y=$ monkey with dynamic programming

Let's compute T:

	M	O	N	K	E	Y
M						
O						
N						
E						
Y						

Needleman-Wunsch algorithm

Initialization of first raw and first column: trivial. Rationale: $\delta e(X, \varepsilon)=|X|=\delta e(\varepsilon, X)$

		M	O	N	K	E	Y
	0	1	2	3	4	5	6
M	1						
O	2						
N	3						
E	Cl	4					
Y	5						

$\mathrm{T}[0][3]=$ Edit distance between ε and $\mathrm{MON}=3$

Needleman-Wunsch algorithm

Fill the rest of the table :
$\begin{aligned} T[i][j]=\min (T[i-1][j]+1, & 1+1=2 \\ T[i][j-1]+1, & 1+1=2 \\ T[i-1][j-1])+\operatorname{subst}(i, j)) & 0+0=0\end{aligned}$

		M	O	N	K	E	Y
	0	A^{1}	2	3	4	5	6
M	1	$? ?$					
O	2						
N	3						
E	4						
Y	5						

Needleman-Wunsch algorithm

Fill the rest of the table :
$\begin{aligned} T[i][j]=\min (T[i-1][j]+1, & 1+1=2 \\ T[i][j-1]+1, & 1+1=2 \\ T[i-1][j-1])+\operatorname{subst}(i, j)) & 0+0=0\end{aligned}$

		M	O	N	K	E	Y
	0	1	2	3	4	5	6
M	1	A_{0}					
O	2						
N	3						
E	4						
Y	5						

Needleman-Wunsch algorithm

After filling a cell, keep track of the best path

		M	O	N	K	E	Y
	0	1	2	3	4	5	6
M	1	0					
O	2						
N	3						
E	4						
Y	5						

Diagonal path: substitution $\mathrm{M} \rightarrow \mathrm{M}$

Needleman-Wunsch algorithm

$$
\begin{array}{cl}
\mathrm{T}[\mathrm{i}][\mathrm{j}]=\min (\mathrm{T}[\mathrm{i-1}][\mathrm{j}]+1, & 0+1=1 \\
\mathrm{~T}[\mathrm{i}][\mathrm{j}-1]+1, & 2+1=3 \\
\mathrm{~T}[\mathrm{i}-1][\mathrm{j}-1])+\operatorname{subst}(\mathrm{i}, \mathrm{j})) & 1+1=2
\end{array}
$$

		M	O	N	K	E	Y
	0	1	2	3	4	5	6
M	1	0	$? ?$				
O	2						
N	3						
E	4						
Y	5						

Needleman-Wunsch algorithm

$$
\begin{array}{cl}
\mathrm{T}[\mathrm{i}][\mathrm{j}]=\min (\mathrm{T}[\mathrm{i-1}][\mathrm{j}]+1, & 0+1=1 \\
\mathrm{~T}[\mathrm{i}][\mathrm{j}-1]+1, & 2+1=3 \\
\mathrm{~T}[\mathrm{i}-1][\mathrm{j}-1])+\operatorname{subst}(\mathrm{i}, \mathrm{j})) & 1+1=2
\end{array}
$$

		M	O	N	K	E	Y
	0	1	2	3	4	5	6
M	1	0	1				
O	2						
N	3						
E	4						
Y	5						

Needleman-Wunsch algorithm

After filling a cell, keep track of the best path

		M	O	N	K	E	Y
	0	1	2	3	4	5	6
M	1	0	-1				
O	2						
N	3						
E	4						
Y	5						

Horizontal path: insertion of 'O’

Needleman-Wunsch algorithm

Iterate...

		M	O	N	K	E	Y
	0	1	2	3	4	5	6
M	1	0	$\boxed{1}$	1	2		
O	2						
N	3						
E	4						
Y	5						

Needleman-Wunsch algorithm

Iterate...

		M	O	N	K	E	Y
	0	1	2	3	4	5	6
M	1	0	1	2	3	4	5
O	2						
N	3						
E	4						
Y	5						

Needleman-Wunsch algorithm

$$
\begin{array}{cl}
\mathrm{T}[\mathrm{i}][\mathrm{j}]=\min (\mathrm{T}[\mathrm{i-1}][\mathrm{j}]+1, & 2+1=3 \\
\mathrm{~T}[\mathrm{i}][\mathrm{j}-1]+1, & 0+1=1 \\
\mathrm{~T}[\mathrm{i}-1][\mathrm{j}-1])+\operatorname{subst}(\mathrm{i}, \mathrm{j})) & 1+1=2
\end{array}
$$

Needleman-Wunsch algorithm

$$
\begin{array}{cl}
\mathrm{T}[\mathrm{i}][\mathrm{j}]=\min (\mathrm{T}[\mathrm{i-1}][\mathrm{j}]+1, & 2+1=3 \\
\mathrm{~T}[\mathrm{i}][\mathrm{j}-1]+1, & 0+1=1 \\
\mathrm{~T}[\mathrm{i}-1][\mathrm{j}-1])+\operatorname{subst}(\mathrm{i}, \mathrm{j})) & 1+1=2
\end{array}
$$

Needleman-Wunsch algorithm

After filling a cell, keep track of the best path

Vertical path: deletion of ' O '

Needleman-Wunsch algorithm

Iterate...

		M	O	N	K	E	Y
	0	1	2	3	4	5	6
M	1		1	2	3	4	5
O	2	1					
N	3						
E	4						
Y	5						

Needleman-Wunsch algorithm

Iterate...

Needleman-Wunsch algorithm

Iterate...

Needleman-Wunsch algorithm

$$
\begin{array}{cc}
\mathrm{T}[\mathrm{i}][\mathrm{j}]=\min (\mathrm{T}[\mathrm{i-1}][\mathrm{j}]+1, & 2+1=3 \\
\mathrm{~T}[\mathrm{i}][\mathrm{j}-1]+1, & 1+1=2 \\
\mathrm{~T}[\mathrm{i}-1][\mathrm{j}-1])+\operatorname{subst}(\mathrm{i}, \mathrm{j})) & 1+1=2
\end{array}
$$

Needleman-Wunsch algorithm

Sometimes, there are several best paths

Ambiguity!

Needleman-Wunsch algorithm

Edit distance between monkey and money = 1

Backtrace the best alignment

Follow the lines!

		M	O	N	K	E	Y
	0	1	2	3	4	5	6
M	1	0	1	2	3	4	5
O	2	1	0	1	2	3	4
N	3	2	1	0	1	2	3
E	4	3	2	1	1	1	2
Y	5	4	3	2	2	2	1

Backtrace the best alignment

- Vertical line: deletion
- Horizontal line: insertion
- Diagonal line: substitution
MON-EY
MONKEY

		M	O	N	K	E	Y
	0	1	2	3	4	5	6
M	1	0	1	2	3	4	5
O	2	1	0	1	2	3	4
N	3	2	1	0	\vdots	2	3
E	4	3	2	1	1	1	2
Y	5	4	3	2	2	2	1

Recap: Needleman-Wunsch algorithm

- Initialize first row and first column

		M	\bigcirc	N	K	E	Y
	0	1	2	3	4	5	6
M	1						
O	2						
N	3						
E	4						
Y	5						

Recap: Needleman-Wunsch algorithm

- Initialize first row and first column
- Fill each element with the minimum of the three previous values. Store the best path.

		M	O	N	K	E	Y
	0	1	2	3	4	5	6
M	1						
O	2						
N	3						
E	4						
Y	5						

Recap: Needleman-Wunsch algorithm

- Initialize first row and first column
- Fill each element with the minimum of the three previous values. Store the best path.
- Backtrace to get the chain of operations

		M	0	N	K	E	Y
	0	1	2	3	4	5	6
M	1						
\bigcirc	2						
N	3						
E	4						
Y	5						

		M	O	N			E	Y
			2	3			5	6
M	1	0	1				4	5
\bigcirc	2						3	4
N	3	2	1					3
E	4	3	2					2
Y	5	4	3	2				

Let $\mathrm{n}=|\mathrm{X}|$ and $\mathrm{m}=|\mathrm{Y}|$. What is the complexity of the Needleman-Wunsch algorithm?

Complexity

- Most expensive step: filling the table
- $\mathrm{O}(\mathrm{n}$ * m$)$ where $\mathrm{n}=|\mathrm{X}|$ and $\mathrm{m}=|\mathrm{Y}|$

Complexity

- Most expensive step: filling the table
- $\mathrm{O}(\mathrm{n}$ * m$)$ where $\mathrm{n}=|\mathrm{X}|$ and $\mathrm{m}=|\mathrm{Y}|$
- Much quicker than naive recursion or bruteforce!

Ambiguities

$$
\binom{\text { A--CGA }}{\text { ATGCTA }}\binom{\text { ACG--A }}{\text { ATGCTA }}
$$

Should we really assign the same cost to substitutions, deletions and insertions?

Should we really assign the same cost to substitutions, deletions and insertions?

\rightarrow No, there is not reason to think that these events are equally likely.

Adding weights

- We can penalize some less likely operations with weights.

Example: assume that substitutions happen 5 times more often than additions and deletions:

$$
\begin{aligned}
F(i, j)=\min & (\\
& F(i, j-1)+5, \\
& F(i-1, j)+5, \\
& F(i-1, j-1)+1 *(X[i]!=Y[j]) \\
&)
\end{aligned}
$$

Remark

If the insertion and deletion costs are different, the edit distance is not a distance anymore:

The symetry $d(X, Y)=d(Y, X)$ is not respected anymore

In coding genes, what could make an insertion less likely than a substitution?
(coding genes code for a protein)

Insertion VS substitution in coding genes

Insertions are less likely to produce a fit organism

- Insertion of a non-multiple of three number of nucletids \rightarrow shift the whole sequence!
TTT CCC AAA GGG \rightarrow TAT TCC CAA AGG
- Some nucleotid substitutions are silent. For instance, TTT and TTC both code for the same amino acid Lys

What is the ratio between subsitutions and insertions/deletions?

It depends!

- Type of organism
- Coding/non coding genes
- Etc.

What kind of alignment problem did we solve with the Needleman-Wunsch algorithm?

Answer: global alignment

- Needleman-Wunsch gives us the best sequence of operations to get Y from X.
- This corresponds to the best global alignment.

Local alignment

Input: two strings X and Y
Output: two aligned substrings

Local alignment problem

Example: TTTACCACAACT and GACCATCAACGGGG

$$
\begin{aligned}
& \mathrm{T} T \mathrm{~A} \mathbf{C} \mathbf{C} \mathbf{A}-\mathbf{C} \mathbf{A} \mathbf{A} \mathbf{C} T \\
& \mathrm{~T} \mathbf{A} \mathbf{C} \mathbf{C} \mathbf{A} \boldsymbol{T} \mathbf{C} \mathbf{A} \mathbf{A} \mathbf{C} G G G G
\end{aligned}
$$

Formulate local alignment problem with distances

"Find the substrings with minimum distance"

Issue: distances increase with the lengths of the strings. Short strings will be selected
$\delta e(A C C A C A A C$, ACCATCAAC) $=1$ $\delta e(A C C A, A C C A)=0$

Similarity functions

- Assign positive and negative weights, to favor similarities
- Insertion, deletion, non-identity substitution have a negative weight
- Identity substitution has a positive weight

Similarity functions are NOT distances. They do not verify:
Positivity: $s(x, y)>=0$

Formulate local alignment problem with similarities

"Find the substrings with maximum similarity"
$S(A C C A C A A C, A C C A T C A A C)=8-1=7$
$S(A C C A, A C C A)=4$

Local alignment problem

Find the two substrings of X and Y with the maximal similarity.

Smith-Waterman algorithm to solve local alignment

Same as Needleman-Wunsch algorithm, but:

- Use a similarity function for the Levenstein formula
- Negative values are set to 0.
- Initialize first row and column with 0.
- Find the largest value in the table and traceback until a 0 is reached.

Align EAWACQGKL and ERDAWCQPGKWY

S	-	E	R	D	A	W	C	Q	P	G	K	W	Y
-	0	0	0	0	0	0	0	0	0	0	0	0	0
E	0	1	0	0	0	0	0	0	0	0	0	0	0
A	0	0	0	0	1	0	0	0	0	0	0	0	0
W	0	0	0	0	0	2	1	0	0	0	0	1	0
A	0	0	0	0	1	1	0	0	0	0	0	0	0
C	0	0	0	0	0	0	2	1	0	0	0	0	0
Q	0	0	0	0	0	0	1	3	2	1	0	0	0
G	0	0	0	0	0	0	0	2	1	3	2	1	0
K	0	0	0	0	0	0	0	1	0	2	4	3	2
L	0	0	0	0	0	0	0	0	0	1	3	2	1

$$
\binom{\text { AWACQ-GK }}{\text { AW-CQPGK }}
$$

Gap penalties

One large deletion is more likely than many small deletions:

$$
\begin{array}{ll}
\text { GAAAAAT } & \text { GAAAAAT } \\
\text { GAA---T } & \text { G-A-A-T }
\end{array}
$$

\rightarrow different scores for gap-start and gapextension

Substitution matrices

- Are all substitution equally likely?
- Is a nucleotid A more likely to be replaced with a G or a T?

Substitution matrices

- Are all substitution equally likely? No!
- Is a nucleotid A more likely to be replaced with a G or a T?

Yes!

Substitution matrices

For instance, transitions ($\mathrm{A}_{\leftrightarrow} \mathrm{G}$ and $\mathrm{C} \leftrightarrow \mathrm{T}$) happen more often than transversions

Substitution matrices

- The substitutions costs in our alignment algorithms should take these rates into account: subst(A,G) < subst(A,C)
- $F(i, j)=\min (F(i, j-1)+i n s(b)$,

$$
\begin{aligned}
& F(i-1, j)+\operatorname{del}(a) \\
& F(i-1, j-1)+\operatorname{subst}(a, b))
\end{aligned}
$$

Substitution matrices

A substitution matrix describes the rate at which one character in a sequence changes to other character states over the time.

	A	G	C	T		
A	10	-1	-3	-4		
G	-1	7	-5	-3		
C	-3	-5	9	0		
T	-4	-3	0	8	\quad	Example of a DNA
:---						
substitution matrix						

Substitution matrices

Substitution matrices are crucial to build reliable alignments!

	A	G	C	T
A	10	-1	-3	-4
G	-1	7	-5	-3
C	-3	-5	9	0
T	-4	-3	0	8

Key points of the lecture (exam-relevant!)

- Local VS global alignment
- Hamming/Edit distances, similarity functions
- Needleman-Wunsch algorithm (and variations):
- Write the recursion formula
- Fill a dynamic programming table
- Backtrace to build the alignment
- Substitution matrices, gap penalties

Questions, feedback?

lukas.huebner@h-its.org

