

Introduction to Bioinformatics for
Computer Scientists

Lecture 3
Pair-wise Sequence Alignment

Lukas Hübner, PhD student
lukas.huebner@h-its.org

slides by
Benoit Morel, postdoc

DNA and protein sequences
are strings

● DNA: AACCTGTTGTCAAATG

● Protein: TTETTSFLIFETAVKNT

Sequences evolve

A C G T A C C C G ← generation 1

Sequences evolve

A C G T A C C C G ← generation 1

A T G T C C C T A G ← generation 2

(and their lengths change)

insertiondeletionsubstitution

Pair-wise sequence alignment

Compare two sequences to infer their similarity

Example: alignment between ‘GCGACGTCC’
and ‘GCGATAC’

Example 1: Measure DNA similarity

How similar are human and
chimpanzee at the DNA level?

Human DNA

Chimpanzee DNA

Example 1: Measure DNA similarity

How similar are human and
chimpanzee at the DNA level?

Human DNA

Chimpanzee DNA

We first need to align their DNA sequences!

(now nucleotids at the same position are comparable)

Example 2: genome assembly

Individual to sequence

Sequencing machine

Unordered reads
(short DNA sequences)

Assembled genome

Example 2: genome assembly

Reference genome

Reads to map

Global and local alignments

Local alignment: align similar substrings

Global alignment: align the full strings

Dynamic programming

● Break down a complicated problem into
simpler subproblems (typically with recursion)

● Cache the results of the recursive calls

Dynamic programming

Break down a complicated problem into
simpler subproblems (typically with recursion)

Example:

Tower of Hanoi algorithm

Distance

● A function d is a distance if the following
conditions are satisfied for all element x and y:
– Positivity: d(x,y) >= 0
– Separation: d(x,y) = 0 <=> x = y
– Symmetry: d(x,y) = d(y,x)
– Triangle inequality: d(x,y) <= d(x,z) + d(z,y) for all

elements z

x y

z

d(x,y)

Hamming distance

● Defined for strings of same length
● Counts the number of characters that differ
● Linear complexity

PING HAMMING ACGTTGGGTT
PONG LEMMING ACGATGCATT
d = 1 d = 2 d = 3

Is hamming biologically relevant?

X = ACTATATATACG
Y = CTATATATACGT

d = 12, the distance between X and Y is maximal

Is hamming biologically relevant?

X = ACTATATATACG
Y = CTATATATACGT

d = 12, the distance between X and Y is maximal

… but X and Y are very similar!

X = ACTATATATACG-
Y = -CTATATATACGT

(Hamming distance is actually relevant, but not to

compare “raw” sequences)

Edit operations:
substitution, insertion and deletion

Substition of one letter x by another letter y

A C G T G C

A C G A G C

Edit operations:
substitution, insertion and deletion

Insertion of one letter

A C G – G C

A C G A G C

Edit operations:
substitution, insertion and deletion

Deletion of one letter

A C G T G C

A C G – G C

Edit distance

δe(x,y) = minimum number of (edits) operations
to transform x into y

Edit distance

Example: compute the edit distance between

“SALADS” and “BALLAD”

Edit distance

Example: compute the edit distance between

“SALADS” and “BALLAD”

SALADS → BALADS Subs S → B

BALADS → BALLADS Insert L

BALLADS → BALLAD Del S

Edit distance = 3

Alignment definition

Result of inserting gaps in both strings such that they
have the same length

Alignments between

x=‘ACGA’ and y=‘ATGCTA’:

ACGA-- A------CGA A--CGA
ATGCTA -ATGCTA-- ATGCTA

What is a good alignment?

We can (for instance) score an alignment with the

hamming distance.

ACGA-- A------CGA A--CGA
ATGCTA -ATGCTA--- ATGCTA
 d=4 d=10 d=3

Aligning sequences using edit
distance

S A L - A D S

B A L L A D -

Computing the alignment with
minimum hamming distance

Computing the edit distance and
storing the sequence of edit

operations
=

subst insert delete

hamming(SAL-ADS,BALLAD-) = edit(SALADS, BALLAD)

How to compute the edit distance between

two strings X and Y?

For instance, how to compute the distance

between poney and monkey?

Naive bruteforce

For each distance from 1 to |X|, try every
possible combinations of edit operations

Naive bruteforce

First iteration:

m-nkey

monkey pmonkey omonkey nmonkey etc.
mponkey moonkey mnonkey etc.
etc.

ponkey oonkey nonkey etc.
mpnkey mknkey mnnkey etc.
etc.

del

insert

subst

-onkey

mo-key
etc.

Naive bruteforce

Second iteration: repeat the same procedure
from each output of the previous iteration

→ Non-polynomial time complexity (with
respect to |X| and |Y|)

Dynamic programming

Recursion on the prefixes of X and Y

We need:
● A recursion formula
● Trivial edge case to end the recursion

Edge case

δe(X, ε) = |X| (delete all letters of X)

δe(ε, Y) = |Y| (insert all letters of Y)

Dynamic programming

Recursion on the prefixes of x and y

We need:
● A recursion formula
● Trivial edge case to end the recursion

Levenstein formula

Let F(i,j) be the edit distance between the prefixes
of X of size i and the prefix of Y of size j.

F(i,j) = min (

F(i, j – 1) + 1,
F(i – 1, j) + 1,
F(i – 1, j – 1) + 1 * (X[i] != Y[j])

)

Levenstein formula

δe(monkey,poney) = min (
δe(monkey,pone) + 1,
δe(monke,poney) + 1,
δe(monke,pone) + 1 * (y != y)

)

First term

Insertionrecursion

 monkey →... → pone → poney

δe(monkey,pone) + 1

F(i, j – 1) + 1

Second term

deletion recursion

monkey → monke→... → poney

δe(monke,poney) + 1

F(i - 1, j) + 1

Third term

substitution?recursion

monke(y) →… → pone(y) → poney

δe(monke,pone) + 0

F(i - 1, j – 1) + 1 * (X[i] != Y[j])

Take the best of the three paths

 pone

monkey monke poney
 poney

recursion

del(y)

recursion

ins(y)

recursion

subst(y,y)

When to stop?

Stop the recursion when one prefix is empty:

F(0, j) = j

F(i, 0) = i

remember: δe(X, ε) = |X| = δe(ε, X)

Levenstein formula
recursion convergence

F(i,j) = min (F(i, j – 1) + 1,
 F(i – 1, j) + 1,
 F(i – 1, j – 1) + 1 * (X[i] != Y[j]))

The quantity (i+j) decreases at each step, until i=0 or j=0, which ends the recursion

Let’s have a look at
the functions calls

 δ(‘ABC’, ‘ABE’)

δ(‘ABC’, ‘AB’) δ(‘AB’, ‘ABE’) δ(‘AB’, ‘AB’)

Naive implementation
→ exponential complexity

 δ(‘ABC’, ‘ABE’)

δ(‘ABC’, ‘AB’) δ(‘AB’, ‘ABE’) δ(‘AB’, ‘AB’)

δ(‘A’, ‘ABE’) δ(‘AB’, ‘AB’) δ(‘A’, ‘AB’)

δ(‘AB’, ‘A’) δ(‘A’, ‘AB’) δ(‘A’, ‘A’)

Redundant computations !

 δ(‘ABC’, ‘ABE’)

δ(‘ABC’, ‘AB’) δ(‘AB’, ‘ABE’) δ(‘AB’, ‘AB’)

δ(‘A’, ‘ABE’) δ(‘AB’, ‘AB’) δ(‘A’, ‘AB’)

δ(‘AB’, ‘A’) δ(‘A’, ‘AB’) δ(‘A’, ‘A’)

Dynamic programming

Be careful not to blindly implement the recursion!

Store intermediate results in a table to avoid
redundant computations

Needleman-Wunsch algorithm

→ Computes the edit distance

→ Finds the best alignment

Stores intermediate results in a table to save
computations

Needleman-Wunsch algorithm

M O N K E Y

M

O

N

E

Y

Store in a table T the edit distance between all the
possible prefixes.

T[4][4] = Edit distance between MONE and MONK

Needleman-Wunsch algorithm

M O N K E Y

M

O

N

E

Y

Edit distance between x=money and y=monkey
with dynamic programming

Let’s compute T:

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1

O 2

N 3

E 4

Y 5

Initialization of first raw and first column: trivial.
Rationale: δe(X, ε) = |X| = δe(ε, X)

T[0][3] = Edit distance between ε and MON = 3

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 ??

O 2

N 3

E 4

Y 5

Fill the rest of the table :
T[i][j] = min(T[i-1][j] + 1, 1 + 1 = 2
 T[i][j-1] + 1, 1 + 1 = 2
 T[i-1][j-1]) + subst(i,j)) 0 + 0 = 0

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0

O 2

N 3

E 4

Y 5

Fill the rest of the table :
T[i][j] = min(T[i-1][j] + 1, 1 + 1 = 2
 T[i][j-1] + 1, 1 + 1 = 2
 T[i-1][j-1]) + subst(i,j)) 0 + 0 = 0

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0

O 2

N 3

E 4

Y 5

After filling a cell, keep track of the best path

Diagonal path: substitution M→M

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 ??

O 2

N 3

E 4

Y 5

T[i][j] = min(T[i-1][j] + 1, 0 + 1 = 1
 T[i][j-1] + 1, 2 + 1 = 3
 T[i-1][j-1]) + subst(i,j)) 1 + 1 = 2

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1

O 2

N 3

E 4

Y 5

T[i][j] = min(T[i-1][j] + 1, 0 + 1 = 1
 T[i][j-1] + 1, 2 + 1 = 3
 T[i-1][j-1]) + subst(i,j)) 1 + 1 = 2

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1

O 2

N 3

E 4

Y 5

After filling a cell, keep track of the best path

Horizontal path: insertion of ‘O’

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2

O 2

N 3

E 4

Y 5

Iterate...

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2

N 3

E 4

Y 5

Iterate...

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 ??

N 3

E 4

Y 5

T[i][j] = min(T[i-1][j] + 1, 2 + 1 = 3
 T[i][j-1] + 1, 0 + 1 = 1
 T[i-1][j-1]) + subst(i,j)) 1 + 1 = 2

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1

N 3

E 4

Y 5

T[i][j] = min(T[i-1][j] + 1, 2 + 1 = 3
 T[i][j-1] + 1, 0 + 1 = 1
 T[i-1][j-1]) + subst(i,j)) 1 + 1 = 2

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1

N 3

E 4

Y 5

After filling a cell, keep track of the best path

Vertical path: deletion of ‘O’

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0

N 3

E 4

Y 5

Iterate...

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1

Y 5

Iterate...

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2

Iterate...

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2 ??

T[i][j] = min(T[i-1][j] + 1, 2 + 1 = 3
 T[i][j-1] + 1, 1 + 1 = 2
 T[i-1][j-1]) + subst(i,j)) 1 + 1 = 2

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2 2

Sometimes, there are several best paths

Ambiguity!

Needleman-Wunsch algorithm

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2 2 2 1

Edit distance between monkey and money = 1

Backtrace the best alignment

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2 2 2 1

Follow the lines!

Backtrace the best alignment

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2 2 2 1

● Vertical line: deletion
● Horizontal line: insertion
● Diagonal line: substitution

M O N - E Y
M O N K E Y

Recap: Needleman-Wunsch
algorithm

● Initialize first row and first column

M O N K E Y

0 1 2 3 4 5 6

M 1

O 2

N 3

E 4

Y 5

Recap: Needleman-Wunsch
algorithm

● Initialize first row and first column
● Fill each element with the minimum of the three

previous values. Store the best path.

M O N K E Y

0 1 2 3 4 5 6

M 1

O 2

N 3

E 4

Y 5

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 ?

Y 5

Recap: Needleman-Wunsch
algorithm

● Initialize first row and first column
● Fill each element with the minimum of the three

previous values. Store the best path.
● Backtrace to get the chain of operations

M O N K E Y

0 1 2 3 4 5 6

M 1

O 2

N 3

E 4

Y 5

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 ?

Y 5

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2 2 2 1

Let n=|X| and m=|Y|. What is the complexity of
the Needleman-Wunsch algorithm?

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2 2 2 1

Complexity

● Most expensive step: filling the table
● O(n * m) where n = |X| and m = |Y|

M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2 2 2 1

Complexity

● Most expensive step: filling the table
● O(n * m) where n = |X| and m = |Y|
● Much quicker than naive recursion or

bruteforce!
M O N K E Y

0 1 2 3 4 5 6

M 1 0 1 2 3 4 5

O 2 1 0 1 2 3 4

N 3 2 1 0 1 2 3

E 4 3 2 1 1 1 2

Y 5 4 3 2 2 2 1

Ambiguities

Should we really assign the same cost to
substitutions, deletions and insertions?

Should we really assign the same cost to
substitutions, deletions and insertions?

→ No, there is not reason to think that these
events are equally likely.

Adding weights

● We can penalize some less likely operations with weights.

Example: assume that substitutions happen 5 times more often than additions
and deletions:

 F(i,j) = min (

 F(i, j – 1) + 5,

 F(i – 1, j) + 5,

 F(i – 1, j – 1) + 1 * (X[i] != Y[j])

)

Remark

If the insertion and deletion costs are different,
the edit distance is not a distance anymore:

The symetry d(X,Y) = d(Y,X)

is not respected anymore

In coding genes, what could make an insertion
less likely than a substitution?

(coding genes code for a protein)

Insertion VS substitution in coding
genes

Insertions are less likely to produce a fit organism

● Insertion of a non-multiple of three number of nucletids →
shift the whole sequence!

TTT CCC AAA GGG → TAT TCC CAA AGG

● Some nucleotid substitutions are silent. For instance, TTT
and TTC both code for the same amino acid Lys

What is the ratio between
subsitutions and

insertions/deletions?

It depends!
● Type of organism
● Coding/non coding genes
● Etc.

What kind of alignment problem did we solve
with the Needleman-Wunsch algorithm?

Answer: global alignment

● Needleman-Wunsch gives us the best
sequence of operations to get Y from X.

● This corresponds to the best global alignment.

Local alignment

Input: two strings X and Y

Output: two aligned substrings

Local alignment problem

Example: TTTACCACAACT and
GACCATCAACGGGG

T T T A C C A - C A A C T
 G A C C A T C A A C G G G G

Formulate local alignment problem
with distances

“Find the substrings with minimum distance”

Issue: distances increase with the lengths of the
strings. Short strings will be selected

δe(ACCACAAC, ACCATCAAC) = 1

δe(ACCA, ACCA) = 0

Similarity functions

● Assign positive and negative weights, to favor
similarities
– Insertion, deletion, non-identity substitution have a

negative weight
– Identity substitution has a positive weight

Similarity functions are NOT distances. They do not
verify:

Positivity: s(x,y) >= 0

Formulate local alignment problem
with similarities

“Find the substrings with maximum similarity”

S(ACCACAAC, ACCATCAAC) = 8 – 1 = 7

S(ACCA, ACCA) = 4

Local alignment problem

Find the two substrings of X and Y with the
maximal similarity.

Smith-Waterman algorithm
to solve local alignment

Same as Needleman-Wunsch algorithm, but:

● Use a similarity function for the Levenstein formula
● Negative values are set to 0.
● Initialize first row and column with 0.
● Find the largest value in the table and traceback

until a 0 is reached.

Align EAWACQGKL and ERDAWCQPGKWY

Gap penalties

One large deletion is more likely than many
small deletions:

GAAAAAT GAAAAAT
GAA---T G-A-A-T

→different scores for gap-start and gap-
extension

Substitution matrices

● Are all substitution equally likely?

● Is a nucleotid A more likely to be
replaced with a G or a T?

Substitution matrices

● Are all substitution equally likely?

No!

● Is a nucleotid A more likely to be
replaced with a G or a T?

Yes!

Substitution matrices

For instance, transitions (A↔G
and C↔T) happen more often
than transversions

Substitution matrices

● The substitutions costs in our alignment
algorithms should take these rates into
account:

subst(A,G) < subst(A,C)

● F(i,j) = min (F(i, j - 1) + ins(b),

 F(i – 1, j) + del(a),

 F(i – 1, j - 1) + subst(a,b))

Substitution matrices

A substitution matrix describes the rate at which
one character in a sequence changes to other
character states over the time.

Example of a DNA
substitution matrix

Substitution matrices

Substitution matrices are crucial to build reliable
alignments!

Key points of the lecture
(exam-relevant!)

● Local VS global alignment
● Hamming/Edit distances, similarity functions
● Needleman-Wunsch algorithm (and variations):

– Write the recursion formula
– Fill a dynamic programming table
– Backtrace to build the alignment

● Substitution matrices, gap penalties

Questions, feedback?

lukas.huebner@h-its.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 14
	Slide 16
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 123
	Slide 124

