
  
1

Introduction to Bioinformatics for 
Computer Scientists

Lecture 5
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Plan for next lectures

● Today: 
● Multiple Sequence Alignment
● Introduction to phylogenetics

● Next time: 
● Introduction to phylogenetics (continued) 
● Phylogenetic search algorithms
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Multiple Sequence Alignment

● What are we trying to reconstruct?
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Insertions, Deletions & Substitutions

T
im

e

ATTGCG

CTTGCG
ATTGCG

ATGCG ATTGCG CTTGCG CTTGCAAG
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Insertions, Deletions & Substitutions

T
im

e

ATTGCG

CTTGCG
ATTGCG

ATGCG ATTGCG CTTGCG CTTGCAAG

A → C: substitution
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Insertions, Deletions & Substitutions

T
im

e

ATTGCG

CTTGCG
ATTGCG

ATGCG ATTGCG CTTGCG CTTGCAAG

A → C: substitution

VOID → AA: insertion
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Insertions, Deletions & Substitutions

T
im

e

ATTGCG

CTTGCG
ATTGCG

ATGCG ATTGCG CTTGCG CTTGCAAG

A → C: substitution

VOID → AA: insertion

We call this: “an indel”
From insertion-deletion
The indel length here 
is 2, longer indel 
lengths are not uncommon!
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Indel size distribution

● Why are indels of size 3 rather frequent? 

Indel size distribution in coding regions of cattle genomes 
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Insertions, Deletions & Substitutions

T
im

e

ATTGCG

CTTGCG
ATTGCG

AT-GCG ATTGCG CTTGCG CTTGCAAG

A → C: substitution

VOID → AA: insertion

T → VOID: deletion
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Insertions, Deletions & Substitutions

T
im

e

ATTGCG

CTTGCG
ATTGCG

AT-GCG ATTGCG CTTGCG CTTGCAAG

A → C: substitution

VOID → AA: insertionT → VOID: deletion

AT-GC--G
ATTGC--G
CTTGC--G
CTTGCAAG

Aligned data:
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Insertions, Deletions & Substitutions

T
im

e

ATTGCG

CTTGCG
ATTGCG

AT-GCG ATTGCG CTTGCG CTTGCAAG

A → C: substitution

VOID → AA: insertionT → VOID: deletion

AT-GC--G
ATTGC--G
CTTGC--G
CTTGCAAG

Aligned data:

Compute which characters share a 
common evolutionary history!

This is also called: inferring homology
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Multiple Sequence Alignment

● So far
● Comparing two sequences (Lukas’ lecture) 
● Mapping a sequence/read to a reference genome (Alexey’s lecture)

● What do we do when we want to compare more than two 
sequences at a time?

→ Multiple Sequence Alignment (MSA)
● Open question: How do we assess the quality/accuracy of 

MSA algorithms?

→ nice review paper: “Who watches the watchmen?” 
http://arxiv.org/abs/1211.2160

 

http://arxiv.org/abs/1211.2160
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Why do we need MSAs?

● Input for phylogenetic reconstruction
● Discover important (e.g., conserved) parts of a 

protein family 
● Protein family → group of evolutionary related 

genes/proteins in different species with similar 
function/structure

● Family has a different meaning than in 
taxonomy!
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MSA

● Generalization of pair-wise sequence alignment problem
● Given n orthologous sequences s1,...,sn of different 

lengths, insert gaps “-” such that:
● All sequences have the same length
● Some criterion is optimized
● Corresponding (homologous) characters in si and sj 

are aligned to each other (in the same alignment 
column/site)

● Columns/sites that entirely consist of gaps are not 
allowed
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MSA Terminology

s1 M Q P I L L L

s2 M L R - L L -

s3 M K - I L L L

s4 M P P V L I L

Alignment site/Alignment column

Orthologous sequences:
Sequences in different species 
that have evolved from the same 
ancestral gene

→ sequences that share a common 
evolutionary history



  
16

MSA Terminology

s1 M Q P I L L L

s2 M L R - L L -

s3 M K - I L L L

s4 M P P V L I L

Alignment site/Alignment column

Homologous characters: 
Characters that share a common
evolutionary history
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MSA Terminology

s1 M Q P I L L L

s2 M L R - L L -

s3 M K - I L L L

s4 M P P V L I L

Alignment site/Alignment column

Homologous characters: 
Characters that share a common
evolutionary history

Note that, in this column the characters 
are similar (analogous), but this does
not automatically induce homology!

They could be similar by chance or via 
convergent evolution (see slides later-on)



  
18

Orthology

Species tree

speciation

speciation

Gene duplication

Gene lineage
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Orthology

Species tree

speciation

speciation

Gene duplication

Gene lineage

orthologous
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Orthology

Species tree

speciation

speciation

Gene duplication

Gene lineage

orthologous paralogous
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Orthology

Species tree

speciation

speciation

Gene duplication

Gene lineage

orthologous paralogous

homologous
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Homology

● High sequence similarity does not automatically 
induce homology
● Same sequence (gene function) can have evolved 

independently twice → convergent evolution
● For short sequences: similar by chance 

parent

offspring offspring

parentparent

offspringoffspring
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Convergent Evolution
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Orthology Assignment

● Numerous methods available
● Will not be covered here → difficult problem
● Henceforth let us assume that we are given a 

set of n orthologous sequences s1,...,sn and 
want to align them
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Alignment Criteria

● How do we define alignment quality?
● There are different criteria

● The SP (sum of pairs) measure
● Real data benchmarks
● Curated alignments (based on protein structure)
● Evolutionary measures
● Simulations  
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Alignment Criteria

● How do we define alignment quality?
● There are different criteria

● The SP (sum of pairs) measure
● Real data benchmarks
● Curated alignments (based on protein structure)
● Evolutionary measures
● Simulations  
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The SP measure

● SP: sum-of-pairs score
● Score each MSA site and then add up the 

scores over all sites
● Penalize mismatches and gaps
● Favor matches
● The per-site score is defined as the sum over all 

pairwise scores between characters of a site
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SP an example

● SP-score(I, -, I, V) = 

p(I,-) + p(I, I) + p(I, V) + p(-, I) + p(-, V) + p(I, V)
● Where p() is the penalty function and p(-,-) := 0
● Given a MSA with n sequences and m sites we 

can thus compute the overall score as:

sp = 0;

for(i = 0; i < m; i++)

sp += SP-score(sites[i]);
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An example

s1 A A G A A - A

s2 A T - A A T G

s3 C T G - G - G

Using the edit distance for p() the score is:

2 + 2 + 2 + 2 + 2 + 2 + 2 = 14

Note that, we can also compute this as the sum of pair-wise edit distances
between the aligned sequences:

e(s1,s2) + e(s1,s3) + e(s2,s3) = 4 + 5 + 5

Keep in mind that, p(-,-) := 0 
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The SP measure

● Note that, this is only one way to quantify the 
quality of an alignment

● One can build alignment algorithms that 
optimize the SP measure

● However, alignments (MSAs) with larger SP 
scores may better represent the true 
evolutionary history of the characters!
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How can we extend pair-wise 
alignment to triple-wise alignment?

● Any ideas?
● What is the time and space complexity?
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SP-based optimization

● We can extend the dynamic programming approach 
for pair-wise sequence alignment to n sequences for 
calculating an SP-optimal MSA

● Assume that all n sequences have equal length m
● Storing the dynamic programming matrix requires O(mn) 

space

● And the lower bound for time is also O(mn) because all mn 

entries need to be computed → consider an example with 
n:= 3

● As you can imagine, computing the SP-optimal MSA 
is NP-complete 

http://online.liebertpub.com/doi/abs/10.1089/cmb.1994.1.337
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SP-based MSA

● NP-complete 
● Not granted that SP is the correct (biologically 

most plausible) criterion!
● Depends on -arbitrary- choice of scoring 

function p()
● We need heuristics or approximation algorithms!
● We will have a look at some basic approaches 

now … 



  
34

Star Alignment Approximation

● Pick a center sequence sc

● Align all remaining sequences to sc using a pairwise 
sequence alignment algorithm 

● “Once a gap, always a gap” strategy 

→ gaps inserted into sc can not be removed 
again

● sc can be picked by computing all O(n2) [more 
precisely: (n2 / 2) - n] optimal pair-wise alignments 
and selecting the sequence that has the largest 
similarity to all other sequences
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Star Alignment

s1: ATTGCCATT

s2: ATGGCCATT

s3: ATCCAATTTT

s4: ATCTTCTT

s5: ACTGACC
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Star Alignment

s1: ATTGCCATT ← center sequence

s2: ATGGCCATT

s3: ATCCAATTTT

s4: ATCTTCTT

s5: ACTGACC
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Star Alignment

s1

s2 s3

s4 s5
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Star Alignment

s1: ATTGCCATT 

s2: ATGGCCATT

s1: ATTGCCATT--

s3: ATC-CAATTTT

s1: ATTGCCATT

s4: ATCTTC-TT

s1: ATTGCCATT

s5: ACTGACC--
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Star Alignment

s1: ATTGCCATT 

s2: ATGGCCATT

s1: ATTGCCATT--

s3: ATC-CAATTTT

s1: ATTGCCATT--

s4: ATCTTC-TT--

s1: ATTGCCATT--

s5: ACTGACC----

Gaps inserted

“Once a gap, always a gap”
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The Star Alignment

s1: ATTGCCATT--

s2: ATGGCCATT--

s3: ATC-CAATTTT

s4: ATCTTC-TT--

s5: ACTGACC----
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Another Example

s1:ATTGCCATT

s2:ATGGCCATT

s3:ATCCAATTTT 

s4:ATCTTCTT

s5:ATTGCCGATT



  
42

Another Example

s1:ATTGCCATT

s2:ATGGCCATT

s1:ATTGCCATT--

s3:AT-CCAATTTT 

s1:ATTGCCATT

s4:ATCTTC-TT

s1:ATTGCC-ATT

s5:ATTGCCGATT

Pairwise alignment step
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Another Example

s1:ATTGCCATT

s2:ATGGCCATT

s1:ATTGCCATT--

s3:AT-CCAATTTT 

s1:ATTGCCATT

s4:ATCTTC-TT

s1:ATTGCC-ATT

s5:ATTGCCGATT

s1:ATTGCCATT

s2:ATGGCCATT

Pairwise alignment step
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Another Example

s1:ATTGCCATT

s2:ATGGCCATT

s1:ATTGCCATT--

s3:AT-CCAATTTT 

s1:ATTGCCATT

s4:ATCTTC-TT

s1:ATTGCC-ATT

s5:ATTGCCGATT

s1:ATTGCCATT

s2:ATGGCCATT

s1:ATTGCCATT--

s2:ATGGCCATT--

s3:AT-CCAATTTT 

Pairwise alignment step
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Another Example

s1:ATTGCCATT

s2:ATGGCCATT

s1:ATTGCCATT--

s3:AT-CCAATTTT 

s1:ATTGCCATT

s4:ATCTTC-TT

s1:ATTGCC-ATT

s5:ATTGCCGATT

s1:ATTGCCATT

s2:ATGGCCATT

s1:ATTGCCATT--

s2:ATGGCCATT--

s3:AT-CCAATTTT 

s1:ATTGCCATT--

S2:ATGGCCATT--

S3:AT-CCAATTTT

s4:ATCTTC-TT--

Pairwise alignment step
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Another Example

s1:ATTGCCATT

s2:ATGGCCATT

s1:ATTGCCATT--

s3:AT-CCAATTTT 

s1:ATTGCCATT

s4:ATCTTC-TT

s1:ATTGCC-ATT

s5:ATTGCCGATT

s1:ATTGCCATT

s2:ATGGCCATT

s1:ATTGCCATT--

s2:ATGGCCATT--

s3:AT-CCAATTTT 

s1:ATTGCCATT--

S2:ATGGCCATT--

S3:AT-CCAATTTT

s4:ATCTTC-TT--

s1:ATTGCC-ATT--

S2:ATGGCC-ATT--

S3:AT-CCA-ATTTT

s4:ATCTTC--TT--

s5:ATTGCCGATT--

Shift right!

Pairwise alignment step Merging step
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Star Alignment Approximation

● Produces an MSA whose SP score is                
< 2 * optimum

● Proof omitted
● Reference: D. Gusfield “Efficient methods for 

multiple sequence alignment with guaranteed 
error bounds”, Bulletin of Mathematical Biology, 
1993.
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Tree Alignment

● If an evolutionary tree for the sequences is 
available

CAT

GT

CTG

CG
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Tree Alignment

● Find an assignment of sequences to the inner 
nodes such that the sum over the similarity 
scores on all branches is maximized

CAT

GT

CTG

CG
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Tree Alignment

p(a,b) := 1 if a = b 

p(a,b) := 0 if a ≠b 

p(a,-) := -1

CAT

GT

CTG

CG

CT CG
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Tree Alignment

p(a,b) := 1 if a = b 

p(a,b) := 0 if a ≠b 

p(a,-) := -1

CAT

GT

CTG

CG

CT CG

CAT
C-T

CG
CG

CT
GT

C-G
CTG

CT
CG
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Tree Alignment

p(a,b) := 1 if a = b 

p(a,b) := 0 if a ≠b 

p(a,-) := -1

CAT

GT

CTG

CG

CT CG

CAT
C-T

CG
CG

CT
GT

C-G
CTG

CT
CG

What is the score of 
this tree?
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Tree Alignment

p(a,b) := 1 if a = b 

p(a,b) := 0 if a ≠b 

p(a,-) := -1

CAT

GT

CTG

CG

CT CG
1

1

1

1

2
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Tree Alignment

p(a,b) := 1 if a = b 

p(a,b) := 0 if a ≠b 

p(a,-) := -1

CAT

GT

CTG

CG

CT CG
1

1

1

1

2

Overall score: 6 → now, maximize this score
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Tree Alignment

p(a,b) := 1 if a = b 

p(a,b) := 0 if a ≠b 

p(a,-) := -1

CAT

GT

CTG

CG

CT CG
1

1

1

1

2

Overall score: 6 → maximize this score
This problem is NP-hard because we don't have the ancestral states
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Tree-Based Alignment

● Hen and egg problem

→ we need an MSA to build a tree

→ we need a tree to compute a MSA

→ if the alignment is wrong, the tree might be wrong

→ if the tree is wrong, the MSA might be wrong
● One idea 

→ simultaneous inference of tree & alignment

→ very hard problem: trying to solve two generally 
NP-hard or NP-complete problems simultaneously 
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Practical approaches

s1 sn

s1

sn

Build a pair-wise 
distance matrix
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Practical approaches

s1 sn

s1

sn

Build a pair-wise 
distance matrix

Computation of pair-wise distance matrix 
Using pair-wise alignment scores can be 
time and memory-intensive due to 
O(n2) complexity
One may use approximate distance 
methods based on k-mers 
(remember last lecture!)
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Practical approaches

s1 sn

s1

sn

root

s1 s6 s44

s23

s33
sn

Guide tree
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Practical approaches

s1 sn

s1

sn

root

s1 s6 s44

s23

s33
sn

root

s1 s6 s44

s23

s33
sn

rootroot

Post-order traversal to build
an alignment bottom-up
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Practical approaches

s1 sn

s1

sn

root

s1 s6 s44

s23

s33
sn

root

s1 s6 s44

s23

s33
sn

rootroot

Pair-wise sequence
alignment

Pair-wise profile
alignment
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Practical Approaches

● Guide-tree approach
● Compute all (n2/2)-n pair-wise distances (alignments) between the n 

sequences
● Use these distances for hierarchical clustering

● e.g. with the Neighbor Joining (NJ) algorithm → we will see this later-on for 
tree building/phylogenetic inference 

● Use the distance-based tree to calculate pair-wise
● Sequence-sequence
● Sequence-profile
● Profile-profile

… alignments bottom up toward the root via a post-order tree traversal 
● Many widely-used MSA programs rely on this idea: e.g., Clustal family 

of tools, T-COFFEE, MUSCLE
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Progressive MSA

AC ATG TCG TCC
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Progressive MSA

AC ATG TCG TCC

ATG
A-C
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Progressive MSA

AC ATG TCG TCC

ATG
A-C

TCC
TCG
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Progressive MSA

AC ATG TCG TCC

ATG
A-C

TCC
TCG

-TCC
-TCG
ATG-
A-C-
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Progressive MSA

AC ATG TCG TCC

ATG
A-C

TCC
TCG

-TCC
-TCG
ATG-
A-C-

Align alignments of
the two descendant nodes 
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Profile Alignment

 

GC

CC

TT

AA T- GC

-TCC
-TCG
ATG-
A-C-
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Profile Alignment

● Generalization of pair-wise sequence alignment to pair-wise 
profile alignment

● Average over all possibilities

    0123456789
S1: PEEKSAVTAL
S2: GEEKAAVLAL
S3: PADKTNVKAA
S4: AADKTNVKAA

    0123456789
S5: EGEWGLVLHV
S6: AAEKTKIRSA

S5
S6

S4S3S2S1
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Profile Alignment

● Generalization of pair-wise sequence alignment to pair-wise 
profile alignment

● Average over all possibilities

    0123456789
S1: PEEKSAVTAL
S2: GEEKAAVLAL
S3: PADKTNVKAA
S4: AADKTNVKAA

    0123456789
S5: EGEWGLVLHV
S6: AAEKTKIRSA

S5
S6

S4S3S2S1

Compute score between position 6 of x and position 7 of y

x y
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Profile Alignment

● Generalization of pair-wise sequence alignment to pair-wise 
profile alignment

● Average over all possibilities

    0123456789
S1: PEEKSAVTAL
S2: GEEKAAVLAL
S3: PADKTNVKAA
S4: AADKTNVKAA

    0123456789
S5: EGEWGLVLHV
S6: AAEKTKIRSA

S5
S6

S4S3S2S1

Weighted average over all 8 (2 * 4) possibilities:
Score: 1/8 * [p(T,V) + p(T,I) + p(L, V) + p(L, I) + p(K,V) + p(K,I) + p(K,V) + p(K,I)]

x y
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Problems with progressive MSA

● Initial pair-wise alignments are “frozen”
● Can't be corrected when new evidence emerges

x

y

z

w

x: GAAGTT
y: GAC-TT → frozen by initial alignment

z: GAACTG
w: GTACTG y: GA-CTT

should be flipped
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Iterative Progressive MSA

● e.g. MUSCLE, PRRP, MAFFT
● Execute progressive MSA several times to re-

fine the alignment
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MUSCLE Re-Finement
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MUSCLE Re-Finement
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MUSCLE Re-Finement
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MUSCLE Re-Finement
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MUSCLE Details

From: “MUSCLE: multiple sequence alignment with high accuracy and high throughput”
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MUSCLE Details

From: “MUSCLE: multiple sequence alignment with high accuracy and high throughput”

These trees are 
rooted!
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MUSCLE Refinement

1. TREE2 is divided into two subtrees by deleting the edge. 
The profile of the multiple alignment in each subtree is 
computed.

2. A new multiple alignment is produced by re-aligning the two 
profiles.

3. An edge/branch is chosen from TREE2 (edges are visited 
in order of decreasing distance from the root)

4. If the SP score is improved, the new alignment is kept,       
otherwise it is discarded.

5. Steps 1. - 4. are repeated until convergence or until a user-
defined limit is reached. 
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Alignment Uncertrainty

● The MSA depends heavily on the guide tree 
● The MSA depends heavily on the penalty matrix 

used 
● Instead of using a single MSA better use an 

ensemble of MSAs for downstream analyses 
that captures these two sources of uncertainty 

● A recent preprint by the MUSCLE guy: 
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What is an ensemble? 

● Ensemble forecasting is a numerical weather prediction method. 
Instead of making a single forecast of the most likely weather, a set (or 
ensemble) of forecasts is produced. This set of forecasts aims to give 
an indication of the range of possible future states of the atmosphere.

● Multiple simulations are conducted to account for uncertainty sources in 
forecast models: 

(1) errors due to imperfect initial conditions

(2) errors introduced because of imperfect models 
● In general, this approach can be used for probabilistic forecasts of any 

dynamical system, not just for weather prediction.
● See: https://en.wikipedia.org/wiki/Ensemble_forecasting 

https://en.wikipedia.org/wiki/Ensemble_forecasting
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Temperature Forecast Ensemble
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Benchmarking MSAs

● MSA benchmarks → mostly structural protein 
data that has been manually aligned to reflect 
the protein structure
● Databases: BALiBASE 2.0, OXBench, PREFAB, etc

● Simulation

→ focus on alignment

→ focus on phylogeny



  
85

Simulation

true MSA

simulate
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Simulation

true MSA

simulate

disalign

ACGTTTT
ACGGGTTT
ACGTTTG
GCAATTTTTT
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Simulation

true MSA

simulate

disalign

ACGTTTT
ACGGGTTT
ACGTTTG
GCAATTTTTT

aligninferred MSA
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Simulation

true MSA

simulate

disalign

ACGTTTT
ACGGGTTT
ACGTTTG
GCAATTTTTT

aligninferred MSA

Count correct sites
Compare SP scores
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Simulation

true MSA

simulate

disalign

ACGTTTT
ACGGGTTT
ACGTTTG
GCAATTTTTT

aligninferred MSA

Infer tree
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Simulation

true MSA

simulate

disalign

ACGTTTT
ACGGGTTT
ACGTTTG
GCAATTTTTT

aligninferred MSA

Infer tree

Compare trees
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Summary

● MSA is generally difficult due to lack of objective criteria
● MSA as defined per SP-score is NP-complete
● Tree-alignment MSA is also NP-complete
● There exist approximation algorithms with performance guarantees
● However, practical approaches use ad hoc heuristics that typically 

perform better
● Classes of algorithms

● Progressive MSA
● Progressive iterative MSA
● Statistical MSA (not covered)
● Phylogeny-aware MSA (not covered)
● Simultaneous MSA & tree inference (not covered)
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Time for a break :-) 

● Up next: Introdutcion to Phylogenetics 
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The story so far

● Biological Terminology: RNA, DNA, genes, 
genomes, etc

● Pair-wise Sequence Alignment
● Sequence Comparison 
● Genome Assembly
● Multiple Sequence Alignment 
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The story so far

● Biological Terminology: RNA, DNA, genes, 
genomes, etc

● Pair-wise Sequence Alignment
● Sequence Comparison 
● Genome Assembly
● Multiple Sequence Alignment
● Phylogenetic Inference 
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A Taxonomy
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A Taxonomy
First systematic classification of living beings by Aristotele 384 -382 BC
Some terms still in use today, e.g., classification of animals into 
Vertebrates versus Invertebrates
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A Taxonomy
First systematic classification of living beings by Aristotele 384 -382 BC
Some terms still in use today, e.g., classification of animals into 
Vertebrates versus Invertebrates

Wirbeltiere
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Taxonomy

● Group biological organisms (species) into groups with similar 
characteristics

● Define characteristics of groups at different hierarchy levels, e.g., 
animals > mammals > great apes

● Taxonomic ranks
● Domain → three domains of life
● Kingdom
● Phylum
● Class
● Order 
● Family
● Genus 
● Species
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A Phylogeny or Phylogenetic Tree

A taxonomic
subclass

This tree is unrooted

The outgroup

The ingroup
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A Phylogeny or Phylogenetic Tree

In Phylogenetics
such a subtree is
often also called 
Lineage!
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Phylogeny

● An unrooted strictly binary tree 
● Leafs are labeled by extant (currently living) organisms represented 

by their DNA/Protein sequences

→ we can also sequence ancient DNA, see, for instance, the 
neandertal genome: “The complete genome sequence of a 
Neanderthal from the Altai Mountains”, Nature 2013

→ depends on temperature, time, and other environmental conditions

→ up to 300,000 years back, see

 http://www.pnas.org/content/110/39/15758.abstract 
● Inner nodes represent hypothetical common ancestors
● Outgroup: one or more closely related, but different species → allows 

to root the tree

http://www.pnas.org/content/110/39/15758.abstract
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Taxon

● Used to denote clades/subtrees in phylogenies or taxonomies

● A group of one or more species that form a biological unit 

● As defined by taxonomists

→ subject of controversial debates

→ part of the culture/fuzziness of Biology
● In phylogenetics we often refer to a single leaf as taxon

→ the plural of taxon is taxa

→ we often say that a tree with n leaves (sequences) has n 
taxa
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Some more terminology

A B C
D E

B and C are a monophyletic group; they are sister species

This phylogeny has a root!
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Some more terminology

A B C
D E

(A,B,C) is a monophyletic group; it is sister to (D, E)
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Some more terminology

A B C
D E

(A,B,C,D) is paraphyletic → E is excluded
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Some more terminology

A B C
D E

(A,D) is a polyphyletic group →  their most recent common ancestor (MRCA) is excluded  
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Some more terminology

A B C
D E

0.1

0.1 0.1

0.05

0.050.05

0.050.05

Tree-based or patristic distance between two taxa: 
Sum over branch lengths along the path in the tree, e.g.:
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Some more terminology

A B C
D E

0.1

0.1 0.1

0.05

0.050.05

0.050.05

Tree-based or patristic distance between two taxa: 
Sum over branch lengths along the path in the tree, e.g.:
A ↔ B: 0.2
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Some more terminology

A B C
D E

0.1

0.1 0.1

0.05

0.050.05

0.050.05

Tree-based or patristic distance between two taxa: 
Sum over branch lengths along the path in the tree, e.g.:
A ↔ B: 0.2
A ↔ D: 0.35
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Tree Rooting

Ingroup species 1Ingroup species 2

Ingroup species 3

Outgroup species 1

Outgroup species 2
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Tree Rooting

Ingroup species 1Ingroup species 2

Ingroup species 3

Outgroup species 1

Outgroup species 2

Pull up
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Tree Rooting

Ingroup species 1

Ingroup species 2

Ingroup species 3
Outgroup species 1

Outgroup species 2

root
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Tree Rooting

Ingroup species 1

Ingroup species 2

Ingroup species 3
Outgroup species 1

Outgroup species 2

root

This is just a drawing option!
Tree inference algorithms treat

ingroup and outgroup sequences 
mathematically in the same way!
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Outgroup Choice

Ingroup species 1

Ingroup species 2

Ingroup species 3

Distant Outgroup

Ingroup species 4

Ingroup species 1Ingroup species 2

Ingroup species 3Ingroup species 4

Fuzzy signal

?

Close Outgroup

Clear signal
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Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Obtain homologous sequences from the same gene 
(e.g., 16S RNA) of different species from a sequence database 
(e.g., GenBank)
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Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Most widely-used alignment formats: 
●PHYLIP 
●NEXUS
●FASTA
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Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Most widely-used tree formats: 
●NEWICK
●NEXUS
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Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Newick example: Remember that this is an 
unrooted tree!
(Taxon1, Taxon2, (Taxon3,Taxon4));
or
((Taxon1, Taxon2), Taxon3,Taxon4);

Top level trifurcation
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Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

((Taxon1, Taxon2), (Taxon3,Taxon4));

root
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Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

0.1

0.2
0.3

0.15

0.15Trees may have relative
branch lengths, depending
on the tree inference method
that was used
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Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

0.1

0.2
0.3

0.15

0.15Trees may have relative
branch lengths, depending
on the tree inference method
that was used

Newick format with branch lengths:
(Taxon1:0.1,Taxon2:0.2,(Taxon3:0.15,Taxon4:0.15):0.3);

Trees may have relative
branch lengths, depending
on the tree inference method
that was used



  
122

Problems with Newick tree format

● Except for branch length values: no way to 
associate meta-data to branch lengths 

● However, there is important meta-data, e.g., 
branch support: how well is a branch in the tree 
supported? 

→ ad hoc solution: represent branch support 
values as node meta-data!

→ this causes problems 
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Problems with Newick tree format
Branch support values represented as node
meta-data can be assigned incorrectly to 
branches after re-rooting.

About 50% of the tools we checked had this
Problem. For details see: 
https://academic.oup.com/mbe/article/34/6/1535/3077051 

Which representation is 
correct? 

https://academic.oup.com/mbe/article/34/6/1535/3077051
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A real example

a) original tree
b) re-rooted tree with shifted support values 
c) re-rooted tree with correct support values 
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Tree Shapes

E
volutionary tim

e

t1 t2 t3 t4

t1

t3

t4

root root

Ultrametric tree
Non-ultrametric tree

t2
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Tree Shapes

E
volutionary tim

e

t1 t2 t3 t4

t1

t2
t3

t4

root root

Ultrametric tree
Non-ultrametric tree

Most tree inference
models/algorithms/programs
produce non-ultrametric trees
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Tree Shapes

E
volutionary tim

e

t1 t2 t3 t4

t1

t2
t3

t4

root root

Ultrametric tree
Non-ultrametric tree

This is still relative time, for instance
the mean substitution rate per site
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Tree Shapes

E
volutionary tim

e

t1 t2 t3 t4

t1

t2
t3

t4

root root

Ultrametric tree
Non-ultrametric tree

How do we get real times?
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Dating Trees

E
volutionary tim

e

t1 t2 t3 t4

root

Ultrametric tree

dated fossil
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Dating Trees

E
volutionary tim

e

t1 t2 t3 t4

root

Ultrametric tree

dated fossil 2 million years
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Dating Trees

E
volutionary tim

e

t1 t2 t3 t4

Root: 3 million years

Ultrametric tree

dated fossil 2 million years

1 million years

2 million years
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Dating Trees

E
volutionary tim

e

t1 t2 t3 t4

Root: 3 million years

Ultrametric tree

dated fossil 2 million years

1 million years

2 million years

We need a rooted & 
ultrametric tree!
→ rooting with outgroups
→ ultrametricity with programs 
for divergence time estimation
→ active research area
→ most codes rely on the phylogenetic
likelihood function and Bayesian 
Statistics (MCMC methods)
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Dating Trees

E
volutionary tim

e

t1 t2 t3 t4

Root: 3 million years

Ultrametric tree

dated fossil 2 million years

1 million years

2 million years

But how do we place the fossil?
→ typically no DNA data available

Fossil placement: 
→ ad hoc using empirical knowledge
→ computationally using 
morphological data

The input for a phylogenetic analysis 
need not be molecular data!

We can also use sequences of 
morphological traits (“Merkmale”)!

e.g. for trees of natural languages
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Remember that we deal with extant 
species!

E
volutionary tim

e

t1 t2 t3 t4

Ultrametric tree

2018
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Morphological Traits

t1: 1000
t2: 0100
t3: 0010
T4: 0001

or:

t1: 0
t2: 1
t3: 2
t4: 3
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Morphological Traits

t1: 1000
t2: 0100
t3: 0010
T4: 0001

or:

t1: 0
t2: 1
t3: 2
t4: 3

Traits need not be discrete, 
they can also be continuous, e.g., bone ratios
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Language Evolution
● Phylogenetic methods can also be 

used to infer trees of natural 
languages 

● Input types 

● Lexical data 

● Morphosyntactic data 

● Sound data 
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Alignment-Free Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

Pair-wise distances
e.g., pair-wise sequence

alignment scores

Tree inference
program

Taxon 1

Taxon 2

Taxon 3

Taxon 4
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Alignment-Free Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

Tree inference
program

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Alignment-free
tree inference 
is typically less
accurate → we have 
not established homology
via a MSA

Pair-wise distances
e.g., pair-wise sequence

alignment scores
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How many unrooted 4-taxon trees 
exist?

A

D

B

C

A

C

B

D

A

B

C

D
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How many rooted 4-taxon trees 
exist?

A

D

B

C

A

C

B

D

A

B

C

D
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Tree Counts

● Unrooted binary trees
● 4 taxa → 3 distinct trees
● A tree with n taxa has n-2 inner nodes
● And 2n-3 branches

● Rooted binary trees
● 4 taxa → 3 unrooted trees * 5 branches each 

(rooting points) = 15 trees
● n-1 inner nodes 
● 2n-2 branches



  
143

The number of trees

3 taxa = 1 tree
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The number of trees

4 taxa: 3 trees
u: # trees of size 4-1 := 1
v: # branches in a tree of size 4-1 := 3
Number of unrooted binary trees with 4 taxa: u * v = 3
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The number of trees

5 taxa: 15 trees
u = 3
v = 5 
Number of unrooted trees with 5 taxa: 3 * 5 = 15
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The number of trees

6 taxa: 105 trees
u = 15
v = 7
u * v = 105
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The number of trees explodes!

BANG !



  
148

Some Numbers



  
149

Equation for the number of unrooted 
trees

● Simple proof via induction

● The number of rooted trees for n taxa simply is 
the number of unrooted trees for n+1 taxa

● The additional (n+1th) taxon represents all 
possible rootings for all unrooted trees with n 
taxa
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# trees with 2000 tips
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A side-note
The treeCounter tool

● Evidently, the tree count can not be computed 
using normal integers

→ we need an arbitrary precision library

→ I used the GNU GMP (Multiple Precision 
Arithmetic) library 

→ treeCounter available as open-source 
code at

 https://github.com/stamatak 

→ Has anybody already used GNU GMP? 

https://github.com/stamatak
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Scoring Trees

● Now we know how many unrooted candidate trees there exist 
for n taxa

● How do we chose among them?

→ we need some scoring criterion f() to evaluate them

→ finding the optimal tree under most criteria is NP-Hard  

A

D

B

C

A

C

B

D

A

B

C

D
f() f() f()

1.0 2.0 3.0

A: ACGG
B: AGGG
C: GA-A
D: AAGG

A: ACGG
B: AGGG
C: GA-A
D: AAGG

A: ACGG
B: AGGG
C: GA-A
D: AAGG
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What can we do with Phylogenies?

Known Species 2Known Species 2 Known Species 4Known Species 4

Known Species 1Known Species 1 Known Species 3Known Species 3

Unknown/anonymous sequence/species

?

reference phylogeny

Phylogenetic placement for 
identifying anonymous 
sequences
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What can we do with Phylogenies?

Known Species 2Known Species 2 Known Species 4Known Species 4

Known Species 1Known Species 1 Known Species 3Known Species 3

Unknown/anonymous sequence/species

?

reference phylogeny

Phylogenetic placement for 
identifying anonymous 
sequences
Examples:
• Bird strike
• Bacteria
• Viral strains
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What can we do with Phylogenies?

Known Species 2Known Species 2 Known Species 4Known Species 4

Known Species 1Known Species 1 Known Species 3Known Species 3

Unknown/anonymous sequence/species

?

reference phylogeny

Note that, this is similar to 
placing an outgroup into the 
tree!
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The Birdstrike Web-Game

● https://cme.h-its.org/exelixis/eseb/public/en/cor
e/title.html
 

https://cme.h-its.org/exelixis/eseb/public/en/core/title.html
https://cme.h-its.org/exelixis/eseb/public/en/core/title.html
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Diversification Rates

Time

From: Charles C. Davis, Hanno Schaefer: “Plant Evolution: Pulses of Extinction 
and Speciation in Gymnosperm Diversity”, Current Biology, 2011.
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Diversification Rates

● With former PostDoc Stephen Smith: “Understanding angiosperm 
diversification using small and large phylogenetic trees”, American 
Journal of Botany 98 (3), 404-414, 2011.

● Largest tree of angiosperms computed to date
● 55,000 taxa
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Diversification Rates

● With former PostDoc Stephen Smith: “Understanding angiosperm 
diversification using small and large phylogenetic trees”, American 
Journal of Botany 98 (3), 404-414, 2011.

● Largest tree of angiosperms computed to date
● 55,000 taxa

Visualizing big trees 
also represents a
challenge → graph
drawing & layout
algorithms.
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Influenza Outbreaks
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And of course SARS-CoV-2
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Snakebites

Australia has more poisonous snakes 
than any other continent, and many 
people die from snakebites each year. 
Developing effective antivenins is thus a 
high priority, but little is known about the 
venins of most species.
Phylogenetic analysis is helping with 
this task because venin properties 
correlate strongly with evolutionary 
relationships.
Although the red-bellied black snake 
looks very different from the king brown, 
it is actually closely related and can be 
treated with the same antivenin. 
Conversely, the western brown looks
very similar to the king brown, but it is 
only distantly related and thus responds 
best to different antivenin. 
The phylogeny is also predictive: the 
recent demonstration that the poorly-
known barclick is closely related to the 
death adder (orange lineage) predicts 
that the former is also highly dangerous 
and might respond to widely-available 
death adder antivenin. 
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Snakebites

Australia has more poisonous snakes 
than any other continent, and many 
people die from snakebites each year. 
Developing effective antivenins is thus a 
high priority, but little is known about the 
venins of most species.
Phylogenetic analysis is helping with 
this task because venin properties 
correlate strongly with evolutionary 
relationships.
Although the red-bellied black snake 
looks very different from the king brown, 
it is actually closely related and can be 
treated with the same antivenin. 
Conversely, the western brown looks
very similar to the king brown, but it is 
only distantly related and thus responds 
best to different antivenin. 
The phylogeny is also predictive: the 
recent demonstration that the poorly-
known barclick is closely related to the 
death adder (orange lineage) predicts 
that the former is also highly dangerous 
and might respond to widely-available 
death adder antivenin. 

Potentially: convergent evolution
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What can we do with phylogenetic 
trees?

● identifying unknown species
● divergence time estimates
● diversification rates
● viral outbreaks
● forensics → M.L. Metzker, D.P. Mindell, X.M. 

Liu, R.G. Ptak, R.A. Gibbs, D.M. Hillis: 
“Molecular evidence of HIV-1 transmission in a 
criminal case” PNAS: 99(22):14292-7, 2002.
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“Nothing in Biology makes sense, 
except in the light of evolution”

Why this increase in 
Phylogenetics papers?
Advances in:
●Sequencing technology
●Hardware
●Methods & Tools



  
166

Building Trees

● We distinguish between
● Distance-based methods 

→ use MSA to compute a matrix of pair-wise distances

→ build a tree using these distances 

→ Heuristics (essentially hierarchical clustering methods)

→ Neighbor Joining: NJ

→ Unweighted Pair Group Method with Arithmetic Mean: UPGMA

→ least-squares method: explicit optimality criterion
● Character-based methods 

→ optimality criteria f() operate directly on the MSA & tree 

→ parsimony

→ maximum likelihood 

→ Bayesian inference

→ take the current tree topology & MSA to calculate a score

→ the score tells us how well the MSA data fits the tree
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Building Trees

● We distinguish between
● Distance-based methods 

→ use MSA to compute a matrix of pair-wise distances

→ build a tree using these distances 

→ Heuristics (essentially hierarchical clustering methods)

→ Neighbor Joining: NJ

→ Unweighted Pair Group Method with Arithmetic Mean: UPGMA

→ least-squares method: explicit optimality criterion
● Character-based methods 

→ optimality criteria f() operate directly on the MSA & tree 

→ parsimony

→ maximum likelihood 

→ Bayesian inference

→ take the current tree topology & MSA to calculate a score

→ the score tells us how well the MSA data fits the tree

Less accurate,
but faster

Slow, but more 
accurate
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Building Trees

● We distinguish between
● Distance-based methods 

→ use MSA to compute a matrix of pair-wise distances

→ build a tree using these distances 

→ Heuristics (essentially hierarchical clustering methods)

→ Neighbor Joining: NJ

→ Unweighted Pair Group Method with Arithmetic Mean: UPGMA

→ least-squares method: explicit optimality criterion
● Character-based methods 

→ optimality criteria f() operate directly on the MSA 

→ parsimony

→ maximum likelihood 

→ Bayesian inference

→ take the current tree topology & MSA to calculate a score

→ the score tells us how well the MSA data fits the tree

Less accurate,
but faster

Slow, but more 
accurate

Memory-intensive!
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Building Trees

● We distinguish between
● Distance-based methods 

→ use MSA to compute a matrix of pair-wise distances

→ build a tree using these distances 

→ Heuristics (essentially hierarchical clustering methods)

→ Neighbor Joining: NJ

→ Unweighted Pair Group Method with Arithmetic Mean: UPGMA

→ least-squares method: explicit optimality criterion
● Character-based methods 

→ optimality criteria f() operate directly on the MSA 

→ parsimony

→ maximum likelihood 

→ Bayesian inference

→ take the current tree topology & MSA to calculate a score

→ the score tells us how well the MSA data fits the tree

Less accurate,
but faster

Slow, but more 
accurate

Memory-intensive!

What could be the computational limitation 
here?
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Building Trees

● We distinguish between
● Distance-based methods 

→ use MSA to compute a matrix of pair-wise distances

→ build a tree using these distances 

→ Heuristics (essentially hierarchical clustering methods)

→ Neighbor Joining: NJ

→ Unweighted Pair Group Method with Arithmetic Mean: UPGMA

→ least-squares method: explicit optimality criterion
● Character-based methods 

→ optimality criteria f() operate directly on the MSA 

→ parsimony

→ maximum likelihood 

→ Bayesian inference

→ take the current tree topology & MSA to calculate a score

→ the score tells us how well the MSA data fits the tree

Less accurate,
but faster

Slow, but more 
accurate

Storing this matrix can become 
problematic memory-wise 
→ out-of-core/external memory algorithms
→ e.g.: NINJA tool for Neighbor joining
“Large-scale neighbor-joining with ninja”
T Wheeler, 
Algorithms in Bioinformatics, 2009 
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Out-of-core Algorithms

● Definition from Wikipedia:
Out-of-core or External memory algorithms are algorithms that are designed to process 
data that is too large to fit into a computer's main memory at one time. Such algorithms 
must be optimized to efficiently fetch and access data stored in slow bulk memory such as 
hard drive or tape drives.

● We do the data transfer RAM ↔ disk explicitly from within the 
application code by using application-specific knowledge (e.g., 
about the data access patterns)

● This is to circumvent the paging procedure that would normally 
be initiated by the OS

● Out-of-core algorithms are typically much faster than the 
application-agnostic paging procedure carried out by the OS

● For an example from phylogenetics see: 
Fernando Izquierdo-Carrasco, Alexandros Stamatakis: "Computing the 
Phylogenetic Likelihood Function Out-of-Core", IEEE HICOMB 2011 workshop, 
Anchorage, USA, May 2011.
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NP-Hardness

● Because of the super-exponential increase in the number of 
possible trees for n taxa ...

● all interesting criteria on trees are NP-hard:

● Least squares
● Parsimony → discrete criterion
● Likelihood → statistical criterion
● Bayesian → integrate likelihood over entire tree space 
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Search Space

good

bad → random trees

Search Space

Best tree according to f()
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Neighbor Joining → Principle

A        B       C        D

A

D

Given a kind of distance matrix Di,j where i,j=1...4 

C

B
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Neighbor Joining → Principle

A        B       C        D

A

D

Given a kind of distance matrix Di,j where i,j=1...4
Find minimum and merge taxa 

C

B

C D

min

X
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Neighbor Joining → Principle

A        B       X   

A

Given a kind of distance matrix Di,j where i,j=1...4
Find minimum and merge taxa
Compute a new distance matrix of size n-1 = 3 
Find minimum

X

B

C D

min

X
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Neighbor Joining → Principle

A        B       X   

A

Given a kind of distance matrix Di,j where i,j=1...4
Find minimum and merge taxa
Compute a new distance matrix of size n-1 = 3 
Find minimum and merge taxa

X

B

C D

min

X

A B

Y



  
178

Neighbor Joining → Principle

A        B       X   

A

Given a kind of distance matrix Di,j where i,j=1...4
Find minimum and merge taxa
Compute a new distance matrix of size n-1 = 3 
Find minimum and merge taxa
Etc.
Space complexity: O(n2)
Time complexity: O(n3)
Key question: how do we compute distance between X and A or X and B respectively
→ for progressive alignment we may align the profile of X with all remaining sequences

X

B

C D

min

X

A B

Y



  

Neighbor Joining Algorithm
● For each tip compute 

ui = j Dij/(n-2) 

→ this is  in principle the average distance to all other tips

→ the denominator is n-2 instead of n, see below why

● Find the pair of tips, (i, j) for which Dij-ui-uj is minimal
● Connect the tips (i,j) to build a new ancestral node X
● The branch lengths from the ancestral node X to i and j are:

bi = 0.5 Dij + 0.5 (ui-uj)

bj = 0.5 Dij + 0.5 (uj-ui) 

● Update the distance matrix:
→ Compute distance between the new node X and each remaining tip as follows:

Dij,k = (Dik+Djk-Dij)/2

● Replace tips i and j by the new node X which is now treated as a tip
● Repeat until only two nodes remain

→ connect the remaining two nodes with each other



  

Neighbor Joining Algorithm

A B C D

A - 17 21 27

B - 12 18

C - 14

D -



  

Neighbor Joining Algorithm

A B C D

A - 17 21 27

B - 12 18

C - 14

D -

i ui

A (17+21+27)/2=32.5

B (17+12+18)/2=23.5

C (21+12+14)/2=23.5

D (27+18+14)/2=29.5

Average distance

Distance matrix, usually denoted as D



  

Neighbor Joining Algorithm

A B C D

A - 17 21 27

B - 12 18

C - 14

D -

i ui

A (17+21+27)/2=32.5

B (17+12+18)/2=23.5

C (21+12+14)/2=23.5

D (27+18+14)/2=29.5

A B C D

A - -39 -35 -35

B - -35 -35

C - -39

D -

Dij-ui-uj

Usually denoted as Q matrix



  

Neighbor Joining Algorithm

A B C D

A - 17 21 27

B - 12 18

C - 14

D -

i ui

A (17+21+27)/2=32.5

B (17+12+18)/2=23.5

C (21+12+14)/2=23.5

D (27+18+14)/2=29.5

A B C D

A - -39 -35 -35

B - -35 -35

C - -39

D -

Dij-ui-uj



  

Neighbor Joining Algorithm

A B C D

A - 17 21 27

B - 12 18

C - 14

D -

i ui

A (17+21+27)/2=32.5

B (17+12+18)/2=23.5

C (21+12+14)/2=23.5

D (27+18+14)/2=29.5

A B C D

A - -39 -35 -35

B - -35 -35

C - -39

D -

Dij-ui-uj

C D

X



  

Neighbor Joining Algorithm

A B C D

A - 17 21 27

B - 12 18

C - 14

D -

i ui

A (17+21+27)/2=32.5

B (17+12+18)/2=23.5

C (21+12+14)/2=23.5

D (27+18+14)/2=29.5

A B C D

A - -39 -35 -35

B - -35 -35

C - -39

D -

Dij-ui-uj

C D

bC = 0.5 x 14 + 0.5 x (23.5-29.5) = 4
bD = 0.5 x 14 + 0.5 x (29.5-23.5) = 10

4 10
X



  

Neighbor Joining Algorithm

A B C D X

A - 17 21 27

B - 12 18

C - 14

D -

X -

C D

4 10
X



  

Neighbor Joining Algorithm

A B C D X

A - 17 21 27

B - 12 18

C - 14

D -

X -

C D

4 10
X

DXA = (DCA + DDA - DCD)/2
   = (21 + 27 - 14)/2
   = 17

DXB = (DCB + DDB - DCD)/2
   = (12 + 18 - 14)/2
   = 8



  

Neighbor Joining Algorithm

A B C D X

A - 17 21 27 17

B - 12 18 8

C - 14

D -

X -

C D

4 10
X

DXA = (DCA + DDA - DCD)/2
   = (21 + 27 - 14)/2
   = 17

DXB = (DCB + DDB - DCD)/2
   = (12 + 18 - 14)/2
   = 8



  

Neighbor Joining Algorithm

A B X

A - 17 17

B - 8

X -

C D

4 10
X

DXA = (DCA + DDA - DCD)/2
   = (21 + 27 - 14)/2
   = 17

DXB = (DCB + DDB - DCD)/2
   = (12 + 18 - 14)/2
   = 8



  

Neighbor Joining Algorithm

A B X

A - 17 17

B - 8

X -

C D

4 10
X

i ui

A (17+17)/1 = 34

B (17+8)/1 = 25

X (17+8)/1 = 25



  

Neighbor Joining Algorithm

A B X

A - 17 17

B - 8

X -

C D

4 10
X

A B X

A - -42 -28

B - -28

X -

Dij-ui-uj

i ui

A (17+17)/1 = 34

B (17+8)/1 = 25

X (17+8)/1 = 25



  

Neighbor Joining Algorithm

A B X

A - 17 17

B - 8

X -

C D

4 10
X

Dij-ui-uj

A B X

A - -42 -28

B - -28

X -

i ui

A (17+17)/1 = 34

B (17+8)/1 = 25

X (17+8)/1 = 25



  

Neighbor Joining Algorithm

A B X

A - 17 17

B - 8

X -

C D

4 10
X

Dij-ui-uj

A B X

A - -42 -28

B - -28

X -

i ui

A (17+17)/1 = 34

B (17+8)/1 = 25

X (17+8)/1 = 25

bA = 0.5 x 17 + 0.5 x (34-25) = 13
bD = 0.5 x 17 + 0.5 x (25-34) = 4

A B

Y
413



  

Neighbor Joining Algorithm

A B X Y

A - 17 17

B - 8

X -

Y

C D

4 10
X

A B

Y
413



  

Neighbor Joining Algorithm

A B X Y

A - 17 17

B - 8

X - 4

Y

C D

4 10
X

A B

Y
413

DYX = (DAX + DBX - DAB)/2
   = (17 + 8 - 17)/2
   = 4



  

Neighbor Joining Algorithm

X Y

X - 4

Y -

C D

4 10
X

A B

Y
413

DYX = (DAX + DBX - DAB)/2
   = (17 + 8 - 17)/2
   = 4



  

Neighbor Joining Algorithm

X Y

X - 4

Y -

C D

4 10

A B

413

4

DYX = (DAX + DBX - DAB)/2
   = (17 + 8 - 17)/2
   = 4



  

Neighbor Joining Algorithm

C

D

A

BA B C D

A - 17 21 27

B - 12 18

C - 14

D -
10

4

13

4

4
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