Introduction to Bioinformatics for Computer Scientists

Lecture 5

Plan for next lectures

- Today:
- Multiple Sequence Alignment
- Introduction to phylogenetics
- Next time:
- Introduction to phylogenetics (continued)
- Phylogenetic search algorithms

Multiple Sequence Alignment

- What are we trying to reconstruct?

Insertions, Deletions \& Substitutions

Indel size distribution

-Why are indels of size 3 rather frequent?

Indel size distribution in coding regions of cattle genomes

Insertions, Deletions \& Substitutions

Insertions, Deletions \& Substitutions

Insertions, Deletions \& Substitutions

Multiple Sequence Alignment

- So far
- Comparing two sequences (Lukas' lecture)
- Mapping a sequence/read to a reference genome (Alexey’s lecture)
- What do we do when we want to compare more than two sequences at a time?
\rightarrow Multiple Sequence Alignment (MSA)
- Open question: How do we assess the quality/accuracy of MSA algorithms?
\rightarrow nice review paper: "Who watches the watchmen?" http://arxiv.org/abs/1211.2160

Why do we need MSAs?

- Input for phylogenetic reconstruction
- Discover important (e.g., conserved) parts of a protein family
- Protein family \rightarrow group of evolutionary related genes/proteins in different species with similar function/structure
- Family has a different meaning than in taxonomy!

MSA

- Generalization of pair-wise sequence alignment problem
- Given n orthologous sequences s_{1}, \ldots, s_{n} of different lengths, insert gaps "-" such that:
- All sequences have the same length
- Some criterion is optimized
- Corresponding (homologous) characters in s_{i} and s_{j} are aligned to each other (in the same alignment column/site)
- Columns/sites that entirely consist of gaps are not allowed

MSA Terminology

Orthologous sequences: Sequences in different species that have evolved from the same ancestral gene
\rightarrow sequences that share a common evolutionary history

Alignment site/Alignment column

MSA Terminology

Homologous characters:
Characters that share a common evolutionary history

Alignment site/Alignment column

MSA Terminology

Alignment site/Alignment column

Orthology

Orthology

Orthology

Orthology

Homology

- High sequence similarity does not automatically induce homology
- Same sequence (gene function) can have evolved independently twice \rightarrow convergent evolution
- For short sequences: similar by chance

Convergent Evolution

Orthology Assignment

- Numerous methods available
- Will not be covered here \rightarrow difficult problem
- Henceforth let us assume that we are given a set of n orthologous sequences s_{1}, \ldots, s_{n} and want to align them

Alignment Criteria

- How do we define alignment quality?
- There are different criteria
- The SP (sum of pairs) measure
- Real data benchmarks
- Curated alignments (based on protein structure)
- Evolutionary measures
- Simulations

Alignment Criteria

- How do we define alignment quality?
- There are different criteria
- The SP (sum of pairs) measure
- Real data benchmarks
- Curated alignments (based on protein structure)
- Evolutionary measures
- Simulations

The SP measure

- SP: sum-of-pairs score
- Score each MSA site and then add up the scores over all sites
- Penalize mismatches and gaps
- Favor matches
- The per-site score is defined as the sum over all pairwise scores between characters of a site

SP an example

- SP-score(I, -, $I, V)=$

$$
p(I,-)+p(I, I)+p(I, V)+p(-, I)+p(-, V)+p(I, V)
$$

- Where $p()$ is the penalty function and $p(-,-):=0$
- Given a MSA with n sequences and m sites we can thus compute the overall score as:

$$
\begin{aligned}
& s p=0 ; \\
& \text { for(i = 0; i < m; i++) } \\
& \text { sp += SP-score(sites[i]); }
\end{aligned}
$$

An example

s1	A	A	G	A	A	-	A
s2	A	T	-	A	A	T	G
s3	C	T	G	-	G	-	G

Using the edit distance for $p()$ the score is:
$2+2+2+2+2+2+2=14$
Note that, we can also compute this as the sum of pair-wise edit distances between the aligned sequences:
$e(s 1, s 2)+e(s 1, s 3)+e(s 2, s 3)=4+5+5$
Keep in mind that, $p(-,-):=0$

The SP measure

- Note that, this is only one way to quantify the quality of an alignment
- One can build alignment algorithms that optimize the $S P$ measure
- However, alignments (MSAs) with larger SP scores may better represent the true evolutionary history of the characters!

How can we extend pair-wise alignment to triple-wise alignment?

- Any ideas?
-What is the time and space complexity?

SP-based optimization

- We can extend the dynamic programming approach for pair-wise sequence alignment to n sequences for calculating an SP-optimal MSA
- Assume that all n sequences have equal length m
- Storing the dynamic programming matrix requires $O\left(m^{n}\right)$ space
- And the lower bound for time is also $O\left(m^{n}\right)$ because all m^{n} entries need to be computed \rightarrow consider an example with $n:=3$
- As you can imagine, computing the SP-optimal MSA is NP-complete

SP-based MSA

- NP-complete
- Not granted that $S P$ is the correct (biologically most plausible) criterion!
- Depends on -arbitrary- choice of scoring function $p()$
- We need heuristics or approximation algorithms!
- We will have a look at some basic approaches now ...

Star Alignment Approximation

- Pick a center sequence s_{C}
- Align all remaining sequences to s_{C} using a pairwise sequence alignment algorithm
- "Once a gap, always a gap" strategy
\rightarrow gaps inserted into s_{C} can not be removed again
- s_{C} can be picked by computing all $O\left(n^{2}\right)$ [more precisely: ($n 2 / 2$) - n] optimal pair-wise alignments and selecting the sequence that has the largest similarity to all other sequences

Star Alignment

s1: ATTGCCATT
s2: ATGGCCATT
s3: ATCCAATTTT
s4: ATCTTCTT
s5: ACTGACC

Star Alignment

s1: ATTGCCATT \leftarrow center sequence
s2: ATGGCCATT
s3: ATCCAATTTT
s4: ATCTTCTT
s5: ACTGACC

Star Alignment

Star Alignment

s1: ATTGCCATT
s2: ATGGCCATT
s1: ATTGCCATT--
s3: ATC-CAATTTT
s1: ATTGCCATT
s4: ATCTTC-TT
s1: ATTGCCATT
s5: ACTGACC--

Star Alignment

The Star Alignment

s1: ATTGCCATT--
s2: ATGGCCATT--
s3: ATC-CAATTTT
s4: ATCTTC-TT--
s5: ACTGACC----

Another Example

s1:ATTGCCATT
s2:ATGGCCATT
s3:ATCCAATTTT
s4:ATCTTCTT
s5:ATTGCCGATT

Another Example

s1:ATTGCCATT
 s2:ATGGCCATT

s1:ATTGCCATT--
s3:AT-CCAATTTT

s1:ATTGCCATT
s4:ATCTTC-TT
s1: ATTGCC-ATT
s5: ATTGCCGATT

Pairwise alignment step

Another Example

s1:ATTGCCATT
 s2:ATGGCCATT

s1:ATTGCCATT
 s2:ATGGCCATT

s1:ATTGCCATT--
s3:AT-CCAATTTT

s1:ATTGCCATT
s4:ATCTTC-TT
s1:ATTGCC-ATT
s5:ATTGCCGATT

Pairwise alignment step

Another Example

s1:ATTGCCATT
s2:ATGGCCATT

s1:ATTGCCATT--
s3:AT-CCAATTTT

s1:ATTGCCATT
s4:ATCTTC-TT

s1:ATTGCCATT--s2:ATGGCCATT--s3:AT-CCAATTTT

s1:ATTGCC-ATT
s5:ATTGCCGATT

Pairwise alignment step

Another Example

s1:ATTGCCATT
 s2:ATGGCCATT

s1:ATTGCCATT--
s3:AT-CCAATTTT

s1:ATTGCCATT
s4:ATCTTC-TT
s1:ATTGCC-ATT
s5:ATTGCCGATT

s1:ATTGCCATT
s2:ATGGCCATT

s1:ATTGCCATT--
s2:ATGGCCATT--s3:AT-CCAATTTT

s1:ATTGCCATT--
S2:ATGGCCATT--
S3:AT-CCAATTTT
s4:ATCTTC-TT--

Another Example

Star Alignment Approximation

- Produces an MSA whose SP score is < 2 * optimum
- Proof omitted
- Reference: D. Gusfield "Efficient methods for multiple sequence alignment with guaranteed error bounds", Bulletin of Mathematical Biology, 1993.

Tree Alignment

- If an evolutionary tree for the sequences is available

Tree Alignment

- Find an assignment of sequences to the inner nodes such that the sum over the similarity scores on all branches is maximized

CAT

CTG

GT

Tree Alignment

$$
\begin{aligned}
& p(a, b):=1 \text { if } a=b \\
& p(a, b):=0 \text { if } a \neq b \\
& p(a,-):=-1
\end{aligned}
$$

Tree Alignment

$$
\begin{aligned}
& p(a, b):=1 \text { if } a=b \\
& p(a, b):=0 \text { if } a \neq b \\
& p(a,-):=-1
\end{aligned}
$$

Tree Alignment

Tree Alignment

Tree Alignment

Overall score: $6 \rightarrow$ now, maximize this score

Tree Alignment

Overall score: $6 \rightarrow$ maximize this score
This problem is NP-hard because we don't have the ancestral states

Tree-Based Alignment

- Hen and egg problem
\rightarrow we need an MSA to build a tree
\rightarrow we need a tree to compute a MSA
\rightarrow if the alignment is wrong, the tree might be wrong
\rightarrow if the tree is wrong, the MSA might be wrong
- One idea
\rightarrow simultaneous inference of tree \& alignment
\rightarrow very hard problem: trying to solve two generally NP-hard or NP-complete problems simultaneously

Practical approaches

Build a pair-wise distance matrix

Practical approaches

Build a pair-wise distance matrix

Computation of pair-wise distance matrix Using pair-wise alignment scores can be time and memory-intensive due to $O\left(n^{2}\right)$ complexity
One may use approximate distance methods based on k-mers (remember last lecture!)

Practical approaches

Practical approaches

Practical approaches

Pair-wise sequence alignment
root

Practical Approaches

- Guide-tree approach
- Compute all (n2/2)-n pair-wise distances (alignments) between the n sequences
- Use these distances for hierarchical clustering
- e.g. with the Neighbor Joining (NJ) algorithm \rightarrow we will see this later-on for tree building/phylogenetic inference
- Use the distance-based tree to calculate pair-wise
- Sequence-sequence
- Sequence-profile
- Profile-profile
... alignments bottom up toward the root via a post-order tree traversal
- Many widely-used MSA programs rely on this idea: e.g., Clustal family of tools, T-COFFEE, MUSCLE

Progressive MSA

Progressive MSA

Progressive MSA

Progressive MSA

Progressive MSA

Align alignments of the two descendant nodes

Profile Alignment

-TCC
-TCG
ATG
A-C -

Profile Alignment

- Generalization of pair-wise sequence alignment to pair-wise profile alignment
- Average over all possibilities

Profile Alignment

- Generalization of pair-wise sequence alignment to pair-wise profile alignment
- Average over all possibilities

	0123456789
S1:	PEEKSAVTAL
S2:	GEEKAAVLAL
S3: PADKTNKAA	
S4:	AADKTNVKAA

0123456789

S5: | EGEWGLVLHV |
| :--- |
| S6: AAEKTKIRSA |

Compute score between position 6 of \mathbf{x} and position 7 of \mathbf{y}

Profile Alignment

- Generalization of pair-wise sequence alignment to pair-wise profile alignment
- Average over all possibilities

Weighted average over all $8(2$ * 4$)$ possibilities:
Score: $1 / 8$ * $[p(T, V)+p(T, I)+p(L, V)+p(L, I)+p(K, V)+p(K, I)+p(K, V)+p(K, I)]$

Problems with progressive MSA

- Initial pair-wise alignments are "frozen"
- Can't be corrected when new evidence emerges

```
x: GAAGTT
y: GAC-TT }->\mathrm{ frozen by initial alignment
    should be flipped
z: GAACTG 
```


Iterative Progressive MSA

- e.g. MUSCLE, PRRP, MAFFT
- Execute progressive MSA several times to refine the alignment

MUSCLE Re-Finement

MUSCLE Re-Finement

MUSCLE Re-Finement

MUSCLE Re-Finement

MUSCLE Details

78From: "MUSCLE: multiple sequence alignment with high accuracy and high throughput"

MUSCLE Details

79From: "MUSCLE: multiple sequence alignment with high accuracy and high throughput"

MUSCLE Refinement

1. TREE2 is divided into two subtrees by deleting the edge. The profile of the multiple alignment in each subtree is computed.
2. A new multiple alignment is produced by re-aligning the two profiles.
3. An edge/branch is chosen from TREE2 (edges are visited in order of decreasing distance from the root)
4. If the SP score is improved, the new alignment is kept, otherwise it is discarded.
5. Steps 1. - 4. are repeated until convergence or until a userdefined limit is reached.

Alignment Uncertrainty

- The MSA depends heavily on the guide tree
- The MSA depends heavily on the penalty matrix used
- Instead of using a single MSA better use an ensemble of MSAs for downstream analyses that captures these two sources of uncertainty
- A recent preprint by the MUSCLE guy:

New Results
4 Follow this preprint
MUSCLE v5 enables improved estimates of phylogenetic tree confidence by ensemble bootstrapping

- Robert C. Edgar

What is an ensemble?

- Ensemble forecasting is a numerical weather prediction method. Instead of making a single forecast of the most likely weather, a set (or ensemble) of forecasts is produced. This set of forecasts aims to give an indication of the range of possible future states of the atmosphere.
- Multiple simulations are conducted to account for uncertainty sources in forecast models:
(1) errors due to imperfect initial conditions
(2) errors introduced because of imperfect models
- In general, this approach can be used for probabilistic forecasts of any dynamical system, not just for weather prediction.
- See: https://en.wikipedia.org/wiki/Ensemble_forecasting

Temperature Forecast Ensemble

Benchmarking MSAs

- MSA benchmarks \rightarrow mostly structural protein data that has been manually aligned to reflect the protein structure
- Databases: BALiBASE 2.0, OXBench, PREFAB, etc
- Simulation
\rightarrow focus on alignment
\rightarrow focus on phylogeny

Simulation

Simulation

Simulation

Simulation

Simulation

Simulation

Summary

- MSA is generally difficult due to lack of objective criteria
- MSA as defined per SP-score is NP-complete
- Tree-alignment MSA is also NP-complete
- There exist approximation algorithms with performance guarantees
- However, practical approaches use ad hoc heuristics that typically perform better
- Classes of algorithms
- Progressive MSA
- Progressive iterative MSA
- Statistical MSA (not covered)
- Phylogeny-aware MSA (not covered)
- Simultaneous MSA \& tree inference (not covered)

Time for a break :-)

- Up next: Introdutcion to Phylogenetics

The story so far

- Biological Terminology: RNA, DNA, genes, genomes, etc
- Pair-wise Sequence Alignment
- Sequence Comparison
- Genome Assembly
- Multiple Sequence Alignment

The story so far

- Biological Terminology: RNA, DNA, genes, genomes, etc
- Pair-wise Sequence Alignment
- Sequence Comparison
- Genome Assembly
- Multiple Sequence Alignment
- Phylogenetic Inference

A Taxonomy

First systematic classification of living beings by Aristotele 384-382 BC Some terms still in use today, e.g., classification of animals into Vertebrates versus Invertebrates

Wirbeltiere
First systematic classification of living beings by Aristotele 384-382 BC Some terms still in use today, e.g., classification of animals into Vertebrates versus Invertebrates

4

Taxonomy

- Group biological organisms (species) into groups with similar characteristics
- Define characteristics of groups at different hierarchy levels, e.g., animals > mammals > great apes
- Taxonomic ranks
- Domain \rightarrow three domains of life
- Kingdom
- Phylum
- Class
- Order
- Family
- Genus
- Species

A Phylogeny or Phylogenetic Tree

A Phylogeny or Phylogenetic Tree

Phylogeny

- An unrooted strictly binary tree
- Leafs are labeled by extant (currently living) organisms represented by their DNA/Protein sequences
\rightarrow we can also sequence ancient DNA, see, for instance, the neandertal genome: "The complete genome sequence of a Neanderthal from the Altai Mountains", Nature 2013
\rightarrow depends on temperature, time, and other environmental conditions
\rightarrow up to 300,000 years back, see
http://www.pnas.org/content/110/39/15758.abstract
- Inner nodes represent hypothetical common ancestors
- Outgroup: one or more closely related, but different species \rightarrow allows to root the tree

Taxon

- Used to denote clades/subtrees in phylogenies or taxonomies
- A group of one or more species that form a biological unit
- As defined by taxonomists
\rightarrow subject of controversial debates
\rightarrow part of the culture/fuzziness of Biology
- In phylogenetics we often refer to a single leaf as taxon
\rightarrow the plural of taxon is taxa
\rightarrow we often say that a tree with n leaves (sequences) has n taxa

Some more terminology

This phylogeny has a root!

B and C are a monophyletic group; they are sister species

Some more terminology

(A, B, C) is a monophyletic group; it is sister to (\mathbf{D}, E)

Some more terminology

$(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathrm{D})$ is paraphyletic $\rightarrow \mathbf{E}$ is excluded

Some more terminology

(A,D) is a polyphyletic group \rightarrow their most recent common ancestor (MRCA) is excluded

Some more terminology

Tree-based or patristic distance between two taxa:
Sum over branch lengths along the path in the tree, e.g.:

Some more terminology

Tree-based or patristic distance between two taxa:
Sum over branch lengths along the path in the tree, e.g.:
A \leftrightarrow B: 0.2

Some more terminology

Tree-based or patristic distance between two taxa:
Sum over branch lengths along the path in the tree, e.g.:
$A \leftrightarrow B: 0.2$
A $\leftrightarrow \mathbf{D}: 0.35$

Tree Rooting

Outgroup species 1

Ingroup species 3
Outgroup species 2

Ingroup species 2
Ingroup species 1

Tree Rooting

Tree Rooting

Tree Rooting

Outgroup Choice

Ingroup species 4
Ingroup species 3

Ingroup species 2
Ingroup species 1
Clear signal

Close Outgroup

Tree Inference

Newick format with branch lengths:

Problems with Newick tree format

- Except for branch length values: no way to associate meta-data to branch lengths
- However, there is important meta-data, e.g., branch support: how well is a branch in the tree supported?
\rightarrow ad hoc solution: represent branch support values as node meta-data!
\rightarrow this causes problems

Problems with Newick tree format

Branch support values represented as node meta-data can be assigned incorrectly to branches after re-rooting.

About 50% of the tools we checked had this Problem. For details see:
https://academic.oup.com/mbe/article/34/6/1535/3077051

Which representation is correct?

A real example

(a)

(b)

(c)

a) original tree
b) re-rooted tree with shifted support values
c) re-rooted tree with correct support values

Tree Shapes

Tree Shapes

Non-ultrametric tree

Tree Shapes

Non-ultrametric tree

Tree Shapes

Dating Trees

Dating Trees

Dating Trees

Dating Trees

We need a rooted \& ultrametric tree!
\rightarrow rooting with outgroups
\rightarrow ultrametricity with programs for divergence time estimation
\rightarrow active research area
\rightarrow most codes rely on the phylogenetic likelihood function and Bayesian Statistics (MCMC methods)

Dating Trees

But how do we place the fossil?
\rightarrow typically no DNA data available
Fossil placement:
\rightarrow ad hoc using empirical knowledge
\rightarrow computationally using morphological data

The input for a phylogenetic analysis need not be molecular data!

We can also use sequences of morphological traits ("Merkmale")!
e.g. for trees of natural languages

Remember that we deal with extant species!

Morphological Traits

```
t1: 1000
t2: 0100
t3: 0010
T4: 0001
or:
t1: 0
t2: 1
t3: 2
t4: 3
```


Morphological Traits

Language Evolution

- Phylogenetic methods can also be used to infer trees of natural languages
- Input types
- Lexical data
- Morphosyntactic data
- Sound data

Alignment-Free Tree Inference

Alignment-Free Tree Inference

How many unrooted 4-taxon trees exist?

How many rooted 4-taxon trees exist?

Tree Counts

- Unrooted binary trees
- 4 taxa $\rightarrow 3$ distinct trees
- A tree with n taxa has $n-2$ inner nodes
- And 2n-3 branches
- Rooted binary trees
- 4 taxa $\rightarrow 3$ unrooted trees * 5 branches each (rooting points) $=15$ trees
- n-1 inner nodes
- $2 n-2$ branches

The number of trees

3 taxa $=1$ tree

The number of trees

4 taxa: 3 trees
u: \# trees of size 4-1 := 1
v : \# branches in a tree of size 4-1 := 3
Number of unrooted binary trees with 4 taxa: u * $v=3$

The number of trees

5 taxa: 15 trees
$\mathrm{u}=3$
$v=5$
Number of unrooted trees with 5 taxa: 3 * $5=15$

The number of trees

The number of trees explodes!

Some Numbers

Number of Organisms	Number of alternative Trees
3	1
4	3
5	15
6	105
7	945
10	2.027 .025
15	7.905 .853 .580 .625
20	$2.21 * 10^{20}$
50	$2.84 * 10^{76}$

Table 2.1: Number of possible trees for phylogenies with 3-50 organisms

Equation for the number of unrooted trees

- Simple proof via induction

$$
\prod_{i=3}^{m}(2 i-5)
$$

- The number of rooted trees for n taxa simply is the number of unrooted trees for $n+1$ taxa
- The additional $\left(n+1^{\text {th }}\right)$ taxon represents all possible rootings for all unrooted trees with n taxa

\# trees with 2000 tips

stamatak@exelixis:~/Desktop/GIT/TreeCounter\$./treeCounter -n 2000

GNU GPL tree number calculator released June 2011 by Alexandros Stamatakis

 350341796875

A side-note The treeCounter tool

- Evidently, the tree count can not be computed using normal integers
\rightarrow we need an arbitrary precision library
\rightarrow I used the GNU GMP (Multiple Precision Arithmetic) library
\rightarrow treeCounter available as open-source code at
https://github.com/stamatak
\rightarrow Has anybody already used GNU GMP?

Scoring Trees

- Now we know how many unrooted candidate trees there exist for n taxa
- How do we chose among them?
\rightarrow we need some scoring criterion $f()$ to evaluate them
\rightarrow finding the optimal tree under most criteria is NP-Hard

What can we do with Phylogenies?

reference phylogeny

What can we do with Phylogenies?

reference phylogeny

What can we do with Phylogenies?

Note that, this is similar to placing an outgroup into the tree!

Unknown/anonymous sequence/species

reference phylogeny

The Birdstrike Web-Game

- https://cme.h-its.org/exelixis/eseb/public/en/cor e/title.html

Aerial Collisions

A research team found out, how birds around the world are related to each other.

Do you see, which birds are closely realted to each other? That is fascinating, right? Click on the images to find out more about the bird on the image. What is a phylogenetic tree?
The molecular laboratory received a bird sample from a plane that should be identified. Can you help them?
Become a teal bird researcher.
Where do the DNA samples come from? Watch this short movie!

Diversification Rates

From: Charles C. Davis, Hanno Schaefer: "Plant Evolution: Pulses of Extinction and Speciation in Gymnosperm Diversity", Current Biology, 2011.

Diversification Rates

- With former PostDoc Stephen Smith: "Understanding angiosperm diversification using small and large phylogenetic trees", American Journal of Botany 98 (3), 404-414, 2011.
- Largest tree of angiosperms computed to date
- 55,000 taxa

Diversification Rates

- With former PostDoc Stephen Smith: "Understanding angiosperm diversification using small and large phylogenetic trees", American Journal of Botany 98 (3), 404-414, 2011.
- Largest tree of angiosperms computed to date
- 55,000 taxa

Influenza Outbreaks

Host Taxa
Galliformes
Anseriformes
Passeriformes
Charadriformes

- Human

Columbidae
Artiodactyla
Accipitriformes
Ardeidae
Carnivora
O Corvidae
O Arthropoda
Ambiguous

And of course SARS-CoV-2

Phylogenetic analysis of SARS-CoV-2 data is difficult

Benoit Morel ${ }^{+1}$, Pierre Barbera ${ }^{+3}$, Lucas Czech ${ }^{2}$, Ben Bettisworth ${ }^{1}$, Lukas Hübner ${ }^{2}$, Sarah Lutteropp ${ }^{1}$, Dora Serdarl ${ }^{1}$, Evangelia-Georgia Kostakl ${ }^{5}$, loannis Mamais ${ }^{\prime \prime}$, Alexey M Kozlov ${ }^{1}$, Pavios Pavilidis ${ }^{4}$, Dimitrios Paraskevis ${ }^{3}$, and Alexandros Stamatakis ${ }^{12}$

[^0]
Snakebites

Australia has more poisonous snakes than any other continent, and many people die from snakebites each year. Developing effective antivenins is thus a high priority, but little is known about the venins of most species.
Phylogenetic analysis is helping with this task because venin properties correlate strongly with evolutionary relationships.
Although the red-bellied black snake looks very different from the king brown, it is actually closely related and can be treated with the same antivenin.
Conversely, the western brown looks very similar to the king brown, but it is only distantly related and thus responds best to different antivenin.
The phylogeny is also predictive: the recent demonstration that the poorlyknown barclick is closely related to the death adder (orange lineage) predicts that the former is also highly dangerous and might respond to widely-available de 162 adder antivenin.

Snakebites

Australia has more poisonous snakes than any other continent, and many people die from snakebites each year. Developing effective antivenins is thus a high priority, but little is known about the venins of most species.
Phylogenetic analysis is helping with this task because venin properties correlate strongly with evolutionary relationships.
Although the red-bellied black snake looks very different from the king brown, it is actually closely related and can be treated with the same antivenin.
Conversely, the western brown looks very similar to the king brown, but it only distantly related and thus respo best to different antivenin.
The phylogeny is also predictive: the recent demonstration that the poorlyknown barclick is closely related to the death adder (orange lineage) predicts that the former is also highly dangerous and might respond to widely-available de 163 adder antivenin.

What can we do with phylogenetic trees?

- identifying unknown species
- divergence time estimates
- diversification rates
- viral outbreaks
- forensics \rightarrow M.L. Metzker, D.P. Mindell, X.M. Liu, R.G. Ptak, R.A. Gibbs, D.M. Hillis: "Molecular evidence of HIV-1 transmission in a criminal case" PNAS: 99(22):14292-7, 2002.

"Nothing in Biology makes sense, except in the light of evolution"

Why this increase in Phylogenetics papers? Advances in:

- Sequencing technology
-Hardware
- Methods \& Tools

Building Trees

- We distinguish between
- Distance-based methods
\rightarrow use MSA to compute a matrix of pair-wise distances
\rightarrow build a tree using these distances
\rightarrow Heuristics (essentially hierarchical clustering methods)
\rightarrow Neighbor Joining: NJ
\rightarrow Unweighted Pair Group Method with Arithmetic Mean: UPGMA
\rightarrow least-squares method: explicit optimality criterion
- Character-based methods
\rightarrow optimality criteria $f($) operate directly on the MSA \& tree
\rightarrow parsimony
\rightarrow maximum likelihood
\rightarrow Bayesian inference
\rightarrow take the current tree topology \& MSA to calculate a score
\rightarrow the score tells us how well the MSA data fits the tree

Building Trees

- We distinguish between
- Distance-based methods
\rightarrow use MSA to compute a matrix of pair-wise distances
\rightarrow build a tree using these distances
\rightarrow Heuristics (essentially hierarchical clustering methods)
\rightarrow Neighbor Joining: NJ
\rightarrow Unweighted Pair Group Method with Arithmetic Mean: UPGMA
\rightarrow least-squares method: explicit optimality criterion
- Character-based methods
\rightarrow optimality criteria $f()$ operate directly on the MSA \& tree
\rightarrow parsimony
\rightarrow maximum likelihood
\rightarrow Bayesian inference

Less accurate, but faster

Slow, but more accurate
\rightarrow take the current tree topology \& MSA to calculate a score
\rightarrow the score tells us how well the MSA data fits the tree

Building Trees

- We distinguish between
- Distance-based methods
\rightarrow use MSA to compute a matrix of pair-wise distances
\rightarrow build a tree using these distances
\rightarrow Heuristics (essentially hierarchical clustering methods)
\rightarrow Neighbor Joining: NJ
\rightarrow Unweighted Pair Group Method with Arithmetic Mean: UPGMA
\rightarrow least-squares method: explicit optimality criterion
- Character-based methods
\rightarrow optimality criteria $f($) operate directly on the MSA
\rightarrow parsimony
\rightarrow maximum likelihood
\rightarrow Bayesian inference
Memory-intensive!
\rightarrow take the current tree topology \& MSA to calculate a score
\rightarrow the score tells us how well the MSA data fits the tree

Building Trees

- We distinguish between
- Distance-based methods
\rightarrow use MSA to compute a matrix of pair-wise distances
\rightarrow build a tree using these distandes
\rightarrow Heuristics (essentially hierarchica vstering methods)
\rightarrow Neighbor Joining: NJ
\rightarrow Unweighted Pair Group Method with Arithn UPGMA
\rightarrow least-squares method: explicit optimality 0

Less accurate, but faster

- Character-based methods
\rightarrow optimality criteria $f($) operate directl

What could be the computational limitation here?
\rightarrow parsimony
\rightarrow maximum likelihood
\rightarrow Bayesian inference
\rightarrow take the current tree topology \& MSA to calculate a score
\rightarrow the score tells us how well the MSA data fits the tree

Building Trees

- We distinguish between
- Distance-based methods
\rightarrow use MSA to compute a matrix of pair-wise distances
\rightarrow build a tree using these distances
\rightarrow Heuristics (essentially hierarchical clus ing methods)
\rightarrow Neighbor Joining: NJ
\rightarrow Unweighted Pair Group Method with Arithmetic \quad LGMA
\rightarrow least-squares method: explicit optimality criter

Less accurate, but faster

- Character-based methods
\rightarrow optimality criteria $f($) operate directly on
\rightarrow parsimony
\rightarrow maximum likelihood
\rightarrow Bayesian inference
\rightarrow take the current tree topology \& MSA to
\rightarrow the score tells us how well the MSA data fits the tree

Out-of-core Algorithms

- Definition from Wikipedia:

Out-of-core or External memory algorithms are algorithms that are designed to process data that is too large to fit into a computer's main memory at one time. Such algorithms must be optimized to efficiently fetch and access data stored in slow bulk memory such as hard drive or tape drives.

- We do the data transfer RAM \leftrightarrow disk explicitly from within the application code by using application-specific knowledge (e.g., about the data access patterns)
- This is to circumvent the paging procedure that would normally be initiated by the OS
- Out-of-core algorithms are typically much faster than the application-agnostic paging procedure carried out by the OS
- For an example from phylogenetics see:

Fernando Izquierdo-Carrasco, Alexandros Stamatakis: "Computing the Phylogenetic Likelihood Function Out-of-Core", IEEE HICOMB 2011 workshop,
171 Anchorage, USA, May 2011.

NP-Hardness

- Because of the super-exponential increase in the number of possible trees for n taxa ...
- all interesting criteria on trees are NP-hard:
- Least squares
- Parsimony \rightarrow discrete criterion
- Likelihood \rightarrow statistical criterion
- Bayesian \rightarrow integrate likelihood over entire tree space

Search Space

Neighbor Joining \rightarrow Principle

Given a kind of distance matrix $D_{i, j}$ where $i, j=1 . . .4$

Neighbor Joining \rightarrow Principle

min

Given a kind of distance matrix $D_{i, j}$ where $i, j=1 \ldots 4$
Find minimum and merge taxa

Neighbor Joining \rightarrow Principle

min

Given a kind of distance matrix $D_{i, j}$ where $i, j=1 \ldots 4$
Find minimum and merge taxa
Compute a new distance matrix of size $n-1=3$
Find minimum

Neighbor Joining \rightarrow Principle

min

Given a kind of distance matrix $D_{i, j}$ where $i, j=1 \ldots 4$
Find minimum and merge taxa
Compute a new distance matrix of size $n-1=3$
Find minimum and merge taxa

Neighbor Joining \rightarrow Principle

Given a kind of distance matrix $D_{i, j}$ where $i, j=1 . . .4$
Find minimum and merge taxa
Compute a new distance matrix of size $n-1=3$
Find minimum and merge taxa
Etc.
Space complexity: $O\left(n^{2}\right)$
Time complexity: $O\left(n^{3}\right)$
Key question: how do we compute distance between X and A or X and B respectively

Neighbor Joining Algorithm

- For each tip compute

$$
u_{i}=\Sigma_{j} D_{i j} /(n-2)
$$

\rightarrow this is in principle the average distance to all other tips
\rightarrow the denominator is $n-2$ instead of n, see below why

- Find the pair of tips, (i, j) for which $D_{i j}-u_{i}-u_{j}$ is minimal
- Connect the tips (i,j) to build a new ancestral node X
- The branch lengths from the ancestral node X to i and j are:

$$
\begin{aligned}
& b_{i}=0.5 D_{i j}+0.5\left(u_{i}-u_{j}\right) \\
& b_{j}=0.5 D_{i j}+0.5\left(u_{j}-u_{i}\right)
\end{aligned}
$$

- Update the distance matrix:
\rightarrow Compute distance between the new node X and each remaining tip as follows:

$$
D_{i j, k}=\left(D_{i k}+D_{j k}-D_{i j}\right) / 2
$$

- Replace tips i and j by the new node X which is now treated as a tip
- Repeat until only two nodes remain
\rightarrow connect the remaining two nodes with each other

Neighbor Joining Algorithm

	A	B	C	D
A	-	17	21	27
B		-	12	18
C			-	14
D				-

Neighbor Joining Algorithm

	A	B	C	D
A	-	17	21	27
B		-	12	18
C			-	14
D				-

i	u_{i}
A	$(17+21+27) / 2=32.5$
B	$(17+12+18) / 2=23.5$
C	$(21+12+14) / 2=23.5$
D	$(27+18+14) / 2=29.5$

Distance matrix, usually denoted as D

Neighbor Joining Algorithm

	A	B	C	D
A	-	17	21	27
B		-	12	18
C			-	14
D				-

i	u_{i}
A	$(17+21+27) / 2=32.5$
B	$(17+12+18) / 2=23.5$
C	$(21+12+14) / 2=23.5$
D	$(27+18+14) / 2=29.5$

	A	B	C	D
A	-	-39	-35	-35
B		-	-35	-35
4 C			-	-39
D				-
$\mathrm{D}_{\mathrm{ij}}-\mathrm{u}_{\mathrm{i}}-\mathrm{u}_{\mathrm{j}}$				

Usually denoted as Q matrix

Neighbor Joining Algorithm

	A	B	C	D
A	-	17	21	27
B		-	12	18
C			14	
D				-

i	u_{i}
A	$(17+21+27) / 2=32.5$
B	$(17+12+18) / 2=23.5$
C	$(21+12+14) / 2=23.5$
D	$(27+18+14) / 2=29.5$

	A	B	C	D
A	-	-39	-35	-35
B		-	-35	-35
C			-	-39
D				-
	$\mathrm{D}_{\mathrm{ij}} \mathbf{-} \mathbf{u}_{\mathrm{i}}-\mathrm{u}_{\mathrm{j}}$			

Neighbor Joining Algorithm

	A	B	C	D
A	-	17	21	27
B		-	12	18
C			-	14
D				-

i	u_{i}
A	$(17+21+27) / 2=32.5$
B	$(17+12+18) / 2=23.5$
C	$(21+12+14) / 2=23.5$
D	$(27+18+14) / 2=29.5$

	A	B	C	D
A	-	-39	-35	-35
B		-	-35	-35
C			-	-39

D

$$
D_{i j}-u_{i}-u_{j}
$$

Neighbor Joining Algorithm

	A	B	C	D
A	-	17	21	27
B		-	12	18
C		-	14	
D				-

i	u_{i}
A	$(17+21+27) / 2=32.5$
B	$(17+12+18) / 2=23.5$
C	$(21+12+14) / 2=23.5$
D	$(27+18+14) / 2=29.5$

	A	B	C	D
A	-	-39	-35	-35
B		-	-35	-35
C			-	-39

D

$$
\begin{aligned}
& b_{c}=0.5 \times 14+0.5 \times(23.5-29.5)=4 \\
& b_{0}=0.5 \times 14+0.5 \times(29.5-23.5)=10
\end{aligned}
$$

Neighbor Joining Algorithm

	A	B	C	D	X
A	-	17	21	27	
B		-	12	18	
C			-	14	
D				-	
X					-

Neighbor Joining Algorithm

	A	B	C	D	X
A	-	17	21	27	
B		-	12	18	
C			-	14	
D				-	
X					-

$$
\begin{aligned}
D_{X A} & =\left(D_{C A}+D_{D A}-D_{C D}\right) / 2 \\
& =(21+27-14) / 2 \\
& =17 \\
D_{X B} & =\left(D_{C B}+D_{D B}-D_{C D}\right) / 2 \\
& =(12+18-14) / 2 \\
& =8
\end{aligned}
$$

Neighbor Joining Algorithm

	A	B	C	D	X
A	-	17	21	27	17
B		-	12	18	8
C			-	14	
D				-	
X					-

$$
\begin{aligned}
D_{X A} & =\left(D_{C A}+D_{D A}-D_{C D}\right) / 2 \\
& =(21+27-14) / 2 \\
& =17 \\
D_{\text {xB }} & =\left(D_{C B}+D_{D B}-D_{C D}\right) / 2 \\
& =(12+18-14) / 2 \\
& =8
\end{aligned}
$$

Neighbor Joining Algorithm

	A	B	X
A	-	17	17
B		-	8
X			-

$$
\begin{aligned}
D_{X A} & =\left(D_{C A}+D_{D A}-D_{C D}\right) / 2 \\
& =(21+27-14) / 2 \\
& =17 \\
D_{\text {XB }} & =\left(D_{C B}+D_{D B}-D_{C D}\right) / 2 \\
& =(12+18-14) / 2 \\
& =8
\end{aligned}
$$

Neighbor Joining Algorithm

	A	B	X
A	-	17	17
B		-	8
X			-

i	u_{i}
A	$(17+17) / 1=34$
B	$(17+8) / 1=25$
X	$(17+8) / 1=25$

Neighbor Joining Algorithm

	A	B	X
A	-	17	17
B		-	8
X			-

i	u_{i}
A	$(17+17) / 1=34$
B	$(17+8) / 1=25$
X	$(17+8) / 1=25$

	A	B	X
A	-	-42	-28
B		-	-28
X			-

$$
D_{i j}-u_{i}-u_{j}
$$

Neighbor Joining Algorithm

	A	B	X
A	-	17	17
B		-	8
X			-

i	u_{i}
A	$(17+17) / 1=34$
B	$(17+8) / 1=25$
X	$(17+8) / 1=25$

	A	B	X
A	-	-42	-28
B		-	-28
X			-

$$
D_{i j}-u_{i}-u_{j}
$$

Neighbor Joining Algorithm

	A	B	X
A	-	17	17
B		-	8
X			-

i	u_{i}
A	$(17+17) / 1=34$
B	$(17+8) / 1=25$
X	$(17+8) / 1=25$

	A	B	X
A	-	-42	-28
B		-	-28
X			-

$$
D_{i j}-u_{i}-u_{j}
$$

$$
\begin{aligned}
& b_{A}=0.5 \times 17+0.5 \times(34-25)=13 \\
& b_{D}=0.5 \times 17+0.5 \times(25-34)=4
\end{aligned}
$$

Neighbor Joining Algorithm

	A	B	X	Y
A	-	17	17	
B		-	8	
X			-	
Y				

Neighbor Joining Algorithm

	A	B	X	Y
A	-	17	17	
B		-	8	
X			-	4
Y				

$$
\begin{aligned}
D_{Y X} & =\left(D_{A X}+D_{B X}-D_{A B}\right) / 2 \\
& =(17+8-17) / 2 \\
& =4
\end{aligned}
$$

Neighbor Joining Algorithm

$$
\begin{array}{ccc}
& X & Y \\
X & - & 4 \\
Y & & -
\end{array}
$$

$$
\begin{aligned}
D_{r X} & =\left(D_{A X}+D_{B X}-D_{A B}\right) / 2 \\
& =(17+8-17) / 2 \\
& =4
\end{aligned}
$$

Neighbor Joining Algorithm

$$
\begin{array}{ccc}
& X & Y \\
X & - & 4 \\
Y & & -
\end{array}
$$

$$
\begin{aligned}
D_{Y X} & =\left(D_{A X}+D_{B X}-D_{A B}\right) / 2 \\
& =(17+8-17) / 2 \\
& =4
\end{aligned}
$$

Neighbor Joining Algorithm

	A	B	C	D
A	-	17	21	27
B		-	12	18
C			-	14
D				-

[^0]: - A (103)
 - A. 1 (393)

 EA. 2 (60)
 A. 3 (68)

 - A. 5 (28)
 A. 6 (6)
 - B (15)
 - B. 1 (3068)
 - B. 2 (446)
 - B. $3(70)$
 B. 4 (100)
 B. $6(76)$
 - B. 9 (5)
 B. 10 (1)
 - B. 11 (344)
 - B. 12 (2)
 - B. 15 (6)
 B.16 (23)
 - B. 17 (5)
 - B. 18 (2)
 - B. 21 (2)
 - B. 23 (21)
 - B. 24 (5)
 E. B. 26 (8)
 - 8.27 (3)

