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Introduction to Bioinformatics for 
Computer Scientists

Lecture 7
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Last Time

● Distinction between distance-based and character-based tree 
inference algorithms 

● Distance-based approaches  

● Heuristics 
– Neighbor Joining O(n3)
– UPGMA O(n2)

● Criteria 
– Least Squares 
– Minum Evolution 
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Last Time

● Search Heuristic Components 

● Methods to infer comprehensive starting trees 
● NNI, SPR, and TBR moves for improviong the score 

of trees - searching tree space
● Character-based Criteria 

● Criteria 
– Parsimony 

● Example of an heuristic parsimony search strategy 
– The Parsimonator algorithm 
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Today

● Data structures for unrooted trees 

● Why do we need statistical/probabilistic models of evolution?

● Introduction to the phylogenetic likelihood function 

● A detour on Markov Chains 
● The phylogenetic likelihood function 
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Data Structures for unrooted Trees

● Unrooted trees with dynamically changing 
virtual roots need a dedicated tree data 
structure
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Remember! - Parsimony

0010 1111 00100001

Virtual root

1+2+1+1= 5

  0001
|0010
 0011

G: 0010

  0010
&1111
 0010

G or T: 0011

 0011
&0010
 0010
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Memory Organization: Ancestral Vectors with 
an Unrooted View
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Memory Organization: Ancestral Vectors with a 
Rooted View

Virtual Root

NULL

NULL

NULL

NULL
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Memory Organization: Ancestral Vectors with a 
Rooted View

New Virtual Root

NULL

NULL

NULL

NULL

Relocate & Re-compute 
Ancestral Vector
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Memory Organization: Ancestral Vectors with a 
Rooted View

New Virtual Root

NULL

NULL

NULL

NULL
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Today

● Data structures for unrooted trees 

● Why do we need statistical/probabilistic models of 
evolution?

● Introduction to the phylogenetic likelihood function 

● A detour on Markov Chains 
● The phylogenetic likelihood function 
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Parsimony & Long Branch Attraction

● Because parsimony tries to minimize the number of 
mutations it faces some problems on trees with long 
branches

A C

B D

A

C

B

D

Correct tree

Wrong tree inferred by parsimony

Long branch attraction
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Parsimony & Long Branch Attraction
● Settings under which parsimony recovers the wrong tree are also called “the 

Felsenstein Zone” after Joe Felsenstein who has made numerous very important 
contributions to the field, e.g.

● The Maximum Likelihood model
● The Bootstrapping procedure

● If you are interested in statistics, there are some on-line courses by Joe at 
http://evolution.gs.washington.edu/courses.html 

http://evolution.gs.washington.edu/courses.html
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Today

● Data structures for unrooted trees 

● Why do we need statistical/probabilistic models of evolution?

● Introduction to the phylogenetic likelihood function 

● A detour on Markov Chains 
● The phylogenetic likelihood function 
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A Detour to Markov Chains

● Before we start looking at likelihood models for phylogenetics 

● We will review the concept of Markov Chains 

● This will be useful to 

● Better understand likelihood models 
● Better understand Markov Chain Monte Carlo Sampling for 

Bayesian statistics 
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Markov Chains - Outline

● We will mostly talk about discrete Markov chains as this is 
conceptually easier 

● Then, we will talk how to get from discrete Markov chains to 
continuous Markov chains … which are used in phylogenetics  
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Markov Chains

● Stochastic processes with transition diagrams 

● Process, is written as {X0, X1, X2, …} 

where Xt is the state at discrete time t

● Markov property: Xt+1 ONLY depends on Xt 

● Such processes are called Markov Chains
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An Example

The Markov flea example: flea hopping around at random on this diagram according 
to the probabilities shown

State transition 
probabilities
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An Example

The Markov flea example: flea hopping around at random on this diagram according 
to the probabilities shown

State space S = {1,2,3,4,5,6,7}

State transition 
probabilities
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An Example

●What is the probability of ever reaching state 7 from state 1?
●Starting from state 2, what is the expected time taken to reach state 4?
●Starting from state 2, what is the long-run proportion of time spent in
state 3?

●Starting from state 1, what is the probability of being in state 2 at time t? 
Does the probability converge as t → ∞, and if so, to what?
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Definitions
● The Markov chain is the process X0, X1, X2, . . ..

● Definition: The state of a Markov chain at time t is the value of Xt

For example, if Xt = 6, we say the process is in state 6 at time t.

● Definition: The state space of a Markov chain, S, is the set of values that each Xt can take. 

For example, S = {1, 2, 3, 4, 5, 6, 7}.

Let S have size N (possibly infinite).

● Definition: A trajectory of a Markov chain is a particular set of values for X0, X1, X2, . . .

For example, if X0 = 1, X1 = 5, and X2 = 6, then the trajectory up to time t = 2 is 1, 5, 6.

More generally, if we refer to the trajectory s0, s1, s2, s3, . . . we mean that

X0 = s0, X1 = s1, X2 = s2, X3 = s3, . . .

‘Trajectory’ is just a word meaning ‘path'
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Markov Property

● Only the most recent point Xt affects what happens next, that is, 
Xt+1 only depends on Xt, but not on Xt-1, Xt-2, . . . 

● More formally: 

●
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Markov Property

● Only the most recent point Xt affects what happens next, that is, 
Xt+1 only depends on Xt, but not on Xt-1, Xt-2, . . . 

● More formally: 

● Explanation
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Definition
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Definition
Discrete states, e.g., A, C, G, T
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The Transition Matrix

Let us transform this into an equivalent transition matrix which is just another
equivalent way of describing this diagram.
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The Transition Matrix

Let us transform this into an equivalent transition matrix which is just another
equivalent way of describing this diagram.
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The Transition Matrix

Let us transform this into an equivalent transition matrix which is just another
Equivalent way of describing this diagram.

States

Values of states

Transition
probabilities
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More formally
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More formally

The transition matrix is usually given the symbol P = (p
ij
)

In the transition matrix P:

the ROWS represent NOW, or FROM X
t

the COLUMNS represent NEXT, or TO X
t+1

Matrix entry i,j is the CONDITIONAL probability that NEXT = j, given that
NOW = i: the probability of going FROM state i TO state j.
p

ij
 = P(X

t+1
 = j | X

t
 = i).
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A Review of Probabilities

brown blonde Σ

light 5/40 15/40 20/40

dark 15/40 5/40 20/40

Σ 20/40 20/40 40/40

Hair color

Eye color

This is not a 
transition matrix!
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A Review of Probabilities

brown blonde Σ

light 5/40 15/40 20/40

dark 15/40 5/40 20/40

Σ 20/40 20/40 40/40

Hair color

Eye color

Joint probability: probability of observing both A and B: Pr(A,B)
For instance, Pr(brown, light) = 5/40 = 0.125
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A Review of Probabilities

brown blonde Σ

light 5/40 15/40 20/40

dark 15/40 5/40 20/40

Σ 20/40 20/40 40/40

Hair color

Eye color

Marginal Probability: unconditional probability of an observation Pr(A)
For instance, Pr(dark) = Pr(dark,brown) + Pr(dark,blonde) = 15/40 + 5/40 = 20/40 = 0.5

Marginalize over hair color
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A Review of Probabilities

brown blonde Σ

light 5/40 15/40 20/40

dark 15/40 5/40 20/40

Σ 20/40 20/40 40/40

Hair color

Eye color

Conditional Probability: The probability of observing A given that B has occurred: 
Pr(A|B) is the fraction of cases Pr(B) in which B occurs where A also occurs with Pr(AB)
Pr(A|B) = Pr(AB) / Pr(B)

For instance, Pr(blonde|light) = Pr(blonde,light) / Pr(light) = (15/40) / (20/40) = 0.75
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A Review of Probabilities

brown blonde Σ

light 5/40 15/40 20/40

dark 15/40 5/40 20/40

Σ 20/40 20/40 40/40

Hair color

Eye color

Statistical Independence: Two events A and B are independent
If their joint probability Pr(A,B) equals the product of their marginal probability Pr(A) Pr(B)
 
For instance, Pr(light,brown) ≠ Pr(light) Pr(brown), that is, the events are not independent!
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More formally

The transition matrix is usually given the symbol P = (p
ij
)

In the transition matrix P:

the ROWS represent NOW, or FROM X
t

the COLUMNS represent NEXT, or TO X
t+1

Matrix entry i,j is the CONDITIONAL probability that NEXT = j, given that
NOW = i: the probability of going FROM state i TO state j.
p

ij
 = P(X

t+1
 = j | X

t
 = i).
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Notes

1.The transition matrix P must list all possible states in the state 
space S.

2.P is a square N × N matrix, because Xt+1 and Xt both take values 
in the same state space S of size N.

3.The rows of P should each sum to 1:

The above simply states that Xt+1 must take one of the listed        
values.

4.The columns of P do in general NOT sum to 1.
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Notes

1.The transition matrix P must list all possible states in the state 
space S.

2.P is a square N × N matrix, because Xt+1 and Xt both take values 
in the same state space S of size N.

3.The rows of P should each sum to 1:

The above simply states that Xt+1 must take one of the listed   
values.

4.The columns of P do in general NOT sum to 1.

This is just another way of writing this
conditional probability.
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t-step Transition Probabilites

● Let {X0 , X1 , X2 , . . .} be a Markov chain with state space S = 
{1, 2, . . . , N }

● Recall that the elements of the transition matrix P are defined 
as

(P)ij = pij = P(X1= j | X0= i) = P(Xn+1= j | Xn= i) for any n.

● pij is the probability of making a transition FROM state i TO 
state j in a SINGLE step

● Question: what is the probability of making a transition from 
state i to state j over two steps? i.e. what is 

P(X2= j | X0= i) ?
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t-step transition probs

Any ideas? 
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t-step transition probs
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t-step transition probs

Sum of probabilities (OR!!!) over all
possible paths with 1 intermediate 
state k that will take us from i to j 
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t-step transition probs

The two step-transition probabilities, in fact, for any n are thus:
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All possible paths

OR OR

0

1

2

Sum over k

X
2
= j

X
1
 = k

X
0
= i

OR



  
45

All possible paths

OR OR

0

1

2

Sum over k

X
2
= j

X
1
 = k

X
0
= i

OR

A

T

A C G T
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All possible paths

OR OR

0

1

2

Sum over k

X
2
= j

X
1
 = k

X
0
= i

OR

A

T

A C G T

We are still thinking 
In discrete steps here!
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3-step transitions

● What is: P(X3 = j | X0 = i) ?
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3-step and t-step transitions

● What is: P(X3 = j | X0 = i) ?

→(P3)ij

● General case with t steps for any t and any n   
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Distribution of X
t

● Let {X0 , X1 , X2 , . . .} be a Markov chain with state space S = 
{1, 2, . . . , N }.

● Now each Xt is a random variable → it has a probability 
distribution.

● We can write down the probability distribution of Xt as vector 
with N elements.

● For example, consider X0 . Let π be a vector with N elements 
denoting the probability distribution of X0.
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The π vector

This means that our Markov process choses at random in which state (e.g., A, C, G, or T) it
starts with probability: P(start in state A) = π

A 

This is why those vectors are also called prior probabilities. 



  
51

Probability of X
1

So, here we are asking what the probability of ending up in state j at X
1
 is, for 

starting in all possible states N at X
0
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All possible paths

OR OR0

1

Sum over i

X
1
= j

X
0
 = iOR

T

A C G T

0.2 0.3 0.4 0.1

p
A,T p

G,Tp
C,T

p
T,T

π vector
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All possible paths

0

1

Sum over i

X
1
= j

X
0
 = i

T

A C G T

0.2 0.3 0.4 0.1

p
A,T p

G,Tp
C,T

p
T,T

π vector

AND: π
A
p

A,T
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Probability Distribution of X
1

This shows that P(X
1
 = j) = πTP

j
 for all j .

The row vector πTP is therefore the probability distribution over all possible states 
for X

1 
, more formally:

X
0
  π∼ T

X
1
  π∼ TP
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Distribution of X
2

● What do you think? 
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Distribution of X
2

● What do you think? 

and in general: 
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Theorem

● Let {X0 , X1 , X2 , . . .} be a Markov chain with a N × N transition 
matrix P. 

● If the probability distribution of X0 is given by the 1 × N row 
vector πT, then the probability distribution of Xt is given by the 1 
× N row vector πTPt . That is,

X0  π∼ T  X⇒ t  π∼ TPt .
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Example – Trajectory probability
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Example – Trajectory probability
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Exercise

●Find the transition matrix P
●Find P(X

2
=3 | X

0
= 1) 

●Suppose that the process is equally likely to start in any state at time 0
→ Find the probability distribution of X

1
●Suppose that the process begins in state 1 at time 0 
→ Find the probability distribution of X

2
●Suppose that the process is equally likely to start in any state at time 0 
→ Find the probability of obtaining the trajectory (3, 2, 1, 1, 3).
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Class Structure

● The state space of a Markov chain can be partitioned into a set 
of non-overlapping communicating classes.

● States i and j are in the same communicating class if there is 
some way of getting from state i → j, AND there is some way of 
getting from state j → i.

● It needn’t be possible to get from i → j in a single step, but it 
must be possible over some number of steps to travel between 
them both ways.

● We write: i ↔ j 
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Definition

● Consider a Markov chain with state space S and transition matrix 
P, and consider states i, j in S. Then state i communicates with 
state j if:

● there exists some t such that (Pt )ij > 0, AND

● there exists some u such that (Pu)ji > 0.
● Mathematically, it is easy to show that the communicating relation 

↔ is an equivalence relation, which means that it partitions the 
state space S into non-overlapping equivalence classes.

● Definition: States i and j are in the same communicating class if  
    i ↔ j : i.e., if each state is accessible from the other.

● Every state is a member of exactly one communicating class.
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Example

● Find the communicating classes!
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Example

● Find the communicating classes!

{1, 2, 3} and {4, 5}

No way back!
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Properties of Communicating 
Classes

● Definition: A communicating class of states is closed if it is not 
possible to leave that class.

That is, the communicating class C is closed if pij = 0 whenever 
i in C and j not in C

● Example: In the transition diagram from the last slide: 

● Class {1, 2, 3} is not closed: it is possible to escape to class 
{4, 5} 

● Class {4, 5} is closed: it is not possible to escape.
● Definition: A state i is said to be absorbing if the set {i} is a 

closed class.

i
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Irreducibility

● Definition: A Markov chain or transition matrix P is said to be 
irreducible if i ↔ j (i communicates with j) for all i, j  S∈  . That 
is, the chain is irreducible if the state space S is a single 
communicating class.

● Do you know an example for an irreducible transition matrix P? 
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Irreducibility

● Definition: A Markov chain or transition matrix P is said to be 
irreducible if i ↔ j for all i, j  S∈  . That is, the chain is 
irreducible if the state space S is a single communicating class.

● Do you know an example for an irreducible transition matrix P? 

A

C

G

T



  
68

Equilibrium

● We saw that if {X0, X1, X2, . . .} is a Markov chain with transition 
matrix P, then Xt  π∼ T  X⇒ t+1  π∼ TP

● Question: is there any distribution π at some time t such that 
πTP = πT ?

● If πTP = πT, then

Xt  π∼ T     X⇒ t+1  π∼ TP = πT

 ⇒ Xt+2  π∼ TP = πT

 ⇒ Xt+3  π∼ TP = πT

 ⇒ . . .
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Equilibrium

● We saw that if {X0, X1, X2, . . .} is a Markov chain with transition matrix P, then 
Xt  π∼ T  X⇒ t+1  π∼ TP

● Question: is there any distribution π at some time t such that πTP = πT ?

● If πTP = πT, then

Xt  π∼ T     X⇒ t+1  π∼ TP = πT

 ⇒ Xt+2  π∼ TP = πT

 ⇒ Xt+3  π∼ TP = πT

 ⇒ . . .
● In other words, if πTP = πT AND Xt  π∼ T, then

Xt  X∼ t+1  X∼ t+2  X∼ t+3  . . .∼

● Thus, once a Markov chain has reached a distribution πT such that πTP = πT,

it will stay there
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Equilibrium

● If πTP = πT, we say that the distribution πT is an equilibrium 
distribution.

● Equilibrium means there will be no further change in the 
distribution of Xt as we wander through the Markov chain.

● Note: Equilibrium does not mean that the actual value of Xt+1 
equals the value of Xt

● It means that the distribution of Xt+1 is the same as the 
distribution of Xt, e.g.

P(Xt+1 = 1) = P(Xt = 1) = π1;

P(Xt+1 = 2) = P(Xt = 2) = π2, etc.
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Example

Suppose we start at time t:=0 with
X

0
  (¼, ¼, ¼, ¼) : so the chain is equally∼

likely to start in any of the four states.
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First Steps

Probability of being in state 1, 2, 3, or 4
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Later Steps

We have reached equilibrium, the chain has forgotten about the initial 
Probability distribution of (¼, ¼, ¼, ¼).

Note: There are several other names for an equilibrium distribution. If πT

is an equilibrium distribution, it is also called:
● invariant: it doesn’t change πT

• stationary: the chain ‘stops’ here
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Calculating the Equilibrium 
Distribution

● For the example, we can explicitly calculate the equilibrium 
distribution by solving  πTP = πT, under the restriction that: 

1. The sum over all entries πi in vector πT is 1

2. All πi are larger or equal to 0

● I will spare you the details, the equilibrium frequencies for our 
example are: (0.28, 0.30, 0.04, 0.38)



  
75

Convergence to Equilibrium

● What is happening here is that each row of the transition matrix 
Pt converges to the equilibrium distribution (0.28, 0.30, 0.04, 
0.38) as t → ∞ 

All rows become identical. 
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Impact of Starting Points
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Impact of Starting Points

Initial behavior is different!
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Continuous Time Models

Probability of ending in state j when starting in state i over time (branch length) ν 
where i = j for the blue curve and i ≠ j for the red one. 

Convergence to stationary 
distribution of the Jukes Cantor 
Model: (0.25,0.25,0.25, 0.25)

Time steps t
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Is there always convergence to an 
equilibrium distribution? 

1.0

1.0



  
80

Is there always convergence to an 
equilibrium distribution? 

1.0

1.0

In this example, Pt never converges to a matrix with both rows identical as t becomes large. 
The chain never ‘forgets’ its starting conditions as t → ∞ . 
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Is there always convergence to an 
equilibrium distribution? 

1.0

1.0

In this example, Pt never converges to a matrix with both rows identical as t becomes large. 
The chain never ‘forgets’ its starting conditions as t → ∞ . 

The chain does have an equilibrium distribution πT = (½, ½). 
However, the chain does not converge to this distribution as
t→ ∞. 
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Convergence

● If a Markov chain is irreducible and aperiodic, and if an 
equilibrium distribution πT exists, then the chain converges to 
this distribution as t → ∞, regardless of the initial starting states.

● Remember: irreducible means that the state space is a single 
communicating class! 

irreducible non-irreducible
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Periodicity

● In general, the chain can return from state i back to state i again 
in t steps if (Pt)ii > 0. This leads to the following definition:

● Definition: The period d(i) of a state i is

d(i) = gcd{t : (Pt)ii> 0},

the greatest common divisor of the times at which return is 
possible.

● Definition: The state i is said to be periodic if d(i) > 1

For a periodic state i, (Pt)ii = 0 if t is not a multiple of d(i)

● Definition: The state i is said to be aperiodic if d(i) = 1 
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Example

d(0) = ?
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Example

d(0) = gcd{2, 4, 6, …} = 2

The chain is irreducible!
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Result

● If a Markov chain is irreducible and has one aperiodic state,

then all states are aperiodic.

● Theorem: Let {X0, X1 , . . .} be an irreducible and aperiodic 
Markov chain with transition matrix P . Suppose that there 
exists an equilibrium distribution πT . Then, from any starting 
state i, and for any end state j,

P(Xt = j | X0 = i) → πj as t → ∞.

In particular, 

(Pt)ij → πj as t → ∞, for all i and j, 

so Pt converges to a matrix with all rows identical and equal to  
πT 
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Why? 

● The stationary distribution gives information about the stability 
of a random process.
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Continuous Time Markov Chains 
(CTMC)

● Tranistions/switching between states at random times and not 
at clock ticks like in a CPU, for example! 

→ no periodic oscillation, concept of waiting times!

0 1

t
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Continuous Time Markov Chains

● Tranistions/switching between states at random times and not 
at clock ticks like in a CPU, for example! 

→ no periodic oscillation, concept of waiting times!

0 1

tUnderstand what happens as we go toward dt
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Use Calculus

● Now write the transition probability matrix P as a function of 
time P(t)

t

P(0)
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Use Calculus

● Now write the transition probability matrix P as a function of 
time P(t)

t

P(0)P(dt)
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Use Calculus

● Now write the transition probability matrix P as a function of 
time P(t)

t
P(0)P(dt) P(2dt)

P(t) is a function that returns a matrix! However, most standard maths on scalar 
functions can be applied. 
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Use Calculus

● Now write the transition probability matrix P as a function of 
time P(t)

t
P(0)P(dt) P(2dt)

P(t) is a function that returns a matrix! However, most standard maths on scalar 
functions can be applied.

Derivative: dP(t) / dt  = lim
δt→0

 [P(t + δt) – P(t)] / δt

Here only dt is a scalar value, everything else is a matrix!

 

P(0)



  
94

Use Calculus

● Now write the transition probability matrix P as a function of 
time P(t)

t
P(0)P(dt) P(2dt)

P(t) is a function that returns a matrix! However, most standard maths on scalar 
functions can be applied.

Derivative: dP(t) / dt  = lim
δt→0

 [P(t + δt) – P(t)] / δt

Here only dt is a scalar value, everything else is a matrix!

The derivative of a matrix is obtained by individually differentiating all of its entries, 
the same holds for the limit.

 

P(0)
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Calculating the limit

● Calculating limδt→0 [P(t + δt) – P(t)] / δt requires solving a differential 
equation. 

● If we can solve this, then we can calculate P(t)

● Remember, for discrete chains:

This is also known as the Chapman-Kolmogorov relationship and 
can be written differently as 

Pn+m = PnPm 

for any discrete number of steps n and m. 
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Calculating the limit

● Calculating limδt→0 [P(t + δt) – P(t)] / δt requires solving a differential 
equation. 

● If we can solve this, then we can calculate P(t)

● Remember, for discrete chains:

This is also known as the Chapman-Kolmogorov relationship and can 
be written differently as 

Pn+m = PnPm 

for any discrete number of steps n and m. Thus for continuous time we 
want: P(t+h) = P(t)P(h) 
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Calculating the limit

limδt→0 [P(t + δt) – P(t)] / δt

limδt→0 [P(t)P(δt) – P(t)] / δt

limδt→0 [P(t)(P(δt) – I)] / δt

Identity matrix, analogous to 1 in the scalar case
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Calculating the limit

limδt→0 [P(t + δt) – P(t)] / δt

limδt→0 [P(t)P(δt) – P(t)] / δt

limδt→0 [P(t)(P(δt) – I)] / δt

The limit doesn't depend on P(t)!

P(t) limδt→0 (P(δt) – I) / δt
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Calculating the limit

limδt→0 [P(t + δt) – P(t)] / δt

limδt→0 [P(t)P(δt) – P(t)] / δt

limδt→0 [P(t)(P(δt) – I)] / δt

The limit doesn't depend on P(t)!

P(t) limδt→0 (P(δt) – I) / δt
This is the famous Q matrix
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Calculating the limit

limδt→0 [P(t + δt) – P(t)] / δt

limδt→0 [P(t)P(δt) – P(t)] / δt

limδt→0 [P(t)(P(δt) – I)] / δt

The limit doesn't depend on P(t)!

P(t) limδt→0 (P(δt) – I) / δt
This is the famous Q matrix

The values of Q can be anything, but rows must sum to 0. Remember that rows of P 
must sum to 1. 
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What we have so far

dP(t)/dt = P(t)Q

Q is also called the jump rate matrix, or instantaneous 
transition matrix 

Now, imagine that P(t) is a scalar function and Q just some 
scalar constant: 

P(t) = exp(Qt)

the same holds for matrices.
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What we have so far

dP(t)/dt = P(t)Q

Q is also called the jump rate matrix, or instantaneous 
transition matrix 

Now, imagine that P(t) is a scalar function and Q just some 
scalar constant: 

P(t) = exp(Qt)

the same holds for matrices.

However calculating a matrix exponential is not trivial, it's not 
just taking the exponential of each of its elements! 

exp(Qt) = I + Qt + 1/2! Q2t2 + 1/3! Q3t3 + …
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P(t)=eQt

● There is no general solution to analytically calculate this matrix 
exponential, it depends on Q.

● In some cases we can come up with an analytical equation, like 
for the aforementioned Jukes Cantor model

● For the GTR model we already need to use creepy numerical 
methods (Eigenvector/Eigenvalue) decomposition, we might 
see that later 

● For non-reversible models it gets even more nasty 
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Equilibrium Distribution

● Assume there exists a row vector πT such that πTQ = 0 

→ πT is the equilibrium distribution
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Today

● Data structures for unrooted trees 

● Why do we need statistical/probabilistic models of evolution?

● Introduction to the phylogenetic likelihood function 

● A detour on Markov Chains 
● The phylogenetic likelihood function 



  

Parsimony & Long Branch Attraction

● Because parsimony tries to minimize the number of 
mutations it faces some problems on trees with long 
branches

A C

B D

A

C

B

D

Correct tree

Wrong tree inferred by parsimony

Long branch attraction



  

Parsimony & Long Branch Attraction
● Settings under which parsimony recovers the wrong tree are also called “the 

Felsenstein Zone” after Joe Felsenstein who has made numerous very important 
contributions to the field, e.g.
● The Maximum Likelihood model
● The Bootstrapping procedure 

● If you are interested in statistics, there are some on-line courses by Joe at 
http://evolution.gs.washington.edu/courses.html 

http://evolution.gs.washington.edu/courses.html
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Likelihood tries to fix this Problem
T
T
C
A
A
G
A
C

T → C → A
T
C → T
A
A → G → C
G → A → G
A
C

T
T → C
C → T
A
A → C
G
A
C

A
T
T
A
C
G
A
C

T
C
T
A
C
G
A
C
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Likelihood tries to fix this Problem
T
T
C
A
A
G
A
C

T → C → A
T
C → T
A
A → G → C
G → A → G
A
C

T
T → C
C → T
A
A → C
G
A
C

A
T
T
A
C
G
A
C

T
C
T
A
C
G
A
C

Speciation event

Hidden events during time t of 
evolution

Observed outcome
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Today and next time → How do we 
compute the likelihood on a tree?

State 4

State 3
State 5

State 1 State 2 State 6
State 7

b2 

b4 
b1 

b5 b6 
b3 
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Next Time → How do we maximize 
the likelihood on a tree?

State 4

State 3
State 5

State 1 State 2 State 6
State 7

b2 

b4 
b1 

b5 b6 
b3 

We need, for instance, to 
optimize/estimate the branch 

lengths
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Likelihood

● Given: 
● MSA 
● Tree topology with branch lengths 
● Model
● We can calculate Px->z(b) for a branch length (or time) b

● Px->z(b) is our continuous time Markov Model of sequence 
evolution! 

● We obtain Px->z(b) by exponentiating the instantaneous 
rate matrix Q 
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Likelihood

● L(T|D) = P(D|T) 

Probability that the tree generated 
the data (generating process)
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Likelihood

● L(T|D) = P(D|T) 

Likelihood of the tree, given the 
data
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Likelihood

● L(T|D) = P(D|T) 

Likelihood: 10 coin flips → 10 heads
What's the likelihood that the coin is fair? 

Probability: Probability of landing heads up 
10 times 
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Likelihood

● L(T|D) = P(D|T)

● L(T|D) = П P(si|T) 
Alignment site i
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Likelihood

● L(T|D) = P(D|T)

● L(T|D) = П P(si|T) 

Alignment site i

What is problematic about this term? 
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Likelihood

● L(T|D) = P(D|T)

● L(T|D) = П P(si|T) 

● log(L(T|D)) = Σ log(P(si|T)) 
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Likelihood

● L(T|D) = P(D|T)

● L(T|D) = П P(si|T) 

● log(L(T|D)) = Σ log(P(si|T)) 

This is the model 
1. Tree topology
2. Branch lengths
3. Model of nucleotide substitution

→ generally lumped into parameter vector Θ: L(Θ|D)
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Likelihood

● L(T|D) = P(D|T)

● L(T|D) = П P(si|T) 

● log(L(T|D)) = Σ log(P(si|T)) 

This is the model 
1. Tree topology
2. Branch lengths
3. Model of nucleotide substitution

→ generally lumped into parameter vector Θ: L(Θ|D)

How do we compute this? 
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Likelihood of a Tree

● We assume that sites evolve independently 

MSA length n

Likelihood of site i
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Likelihood of a Tree

● We assume that sites evolve independently 

MSA length n

Likelihood of site i

b
4

b
3

b
2

b
5

b
1
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Likelihood of a Tree

● We assume that sites evolve independently 

MSA length n

Likelihood of site i

b
4

b
3

b
2

b
5

b
1

Model M
P

ij
(t)
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Likelihood of a Tree

● We assume that sites evolve independently

● Overall likelihood: L := Π Li 
MSA length n

Likelihood of site i

b
4

b
3

b
2

b
5

b
1

Model M
P

ij
(t)
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Likelihood of a Tree

● We assume that sites evolve independently

● Overall likelihood: L := Π Li 

● Pij(t) i,j in {A, C, G, T} 

MSA length n

Likelihood of site i

b
4

b
3

b
2

b
5

b
1

Model M
P

ij
(t)

Branch length/relative time 
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Likelihood of a Tree

● We assume that sites evolve independently

● Overall likelihood: L := Π Li 

● Pij(t) i,j in {A, C, G, T} 

→ Probability of being in state j after time t

→ We assume that Pij(t) is a continuous time Markov Process

MSA length n

Likelihood of site i

b
4

b
3

b
2

b
5

b
1

Model M
P

ij
(t)



127

Likelihood of a Tree

● We assume that sites evolve independently

● Overall likelihood: L := Π Li 

● Pij(t) i,j in {A, C, G, T} 

→ Probability of being in state j after time t

→ We assume that Pij(t) is a Markov Process

● Equilibrium frequency vector π = (πA, πC, πG, πT)

MSA length n

Likelihood of site i

b
4

b
3

b
2

b
5

b
1

Model M
P

ij
(t)
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Likelihood of a Tree

● We assume that sites evolve independently

● Overall likelihood: L := Π Li 

● Pij(t) i,j in {A, C, G, T} 

→ Probability of being in state j after time t

→ We assume that Pij(t) is a Markov Process

● Equilibrium frequency vector π = (πA, πC, πG, πT)

● Time reversibility: πi Pij(t) = πj Pji(t) 

MSA length n

Likelihood of site i

b
4

b
3

b
2

b
5

b
1

Model M
P

ij
(t)
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What's the likelihood of this tree?

A

A

G

T



130

What's the likelihood of this tree?

A

A

G

T

Virtual root
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What's the likelihood of this tree?

A A
GT

I1

I2
I3

b1

b2
b3

b4

b5 b6



132

What's the likelihood of this tree?

A A
GT

A

A
T

b1

b2
b3

b4

b5 b6

Assume the inner states are given!
What is the likelihood of the tree if we 
interpret it as Markov diagram? 
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What's the likelihood of this tree?

A A
GT

A

A
T

b1

b2
b3

b4

b5 b6

Assume the inner states are given!
What is the likelihood of the tree if we 
interpret it as Markov diagram?

L
i
 = π P

AA
(b

1
) P

AA
(b

2
) P

AA
(b

3
) 

P
AT

(b
4
)P

TT
(b

5
) P

TG
(b

6
)
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What's the likelihood of this tree?

A A
GT

A

A
T

b1

b2
b3

b4

b5 b6

Assume the inner states are given!
What is the likelihood of the tree if we 
Interpret it as Markov diagram?

L
i
 = π

A
 P

AA
(b

1
) P

AA
(b

2
) P

AA
(b

3
) 

P
AT

(b
4
)P

TT
(b

5
) P

TG
(b

6
)

We are multiplying here, because to 
observe the data at the tips, given the 
tree, the initial state must be A  π

A
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What's the likelihood of this tree?

A A
GT

A

A
T

b1

b2
b3

b4

b5 b6

Assume the inner states are given!
What is the likelihood of the tree if we 
Interpret it as Markov diagram?

L
i
 = π

A
 P

AA
(b

1
) P

AA
(b

2
) P

AA
(b

3
) 

P
AT

(b
4
)P

TT
(b

5
) P

TG
(b

6
)

We are multiplying here, because to 
observe the data at the tips, given the 
tree, the initial state must be A  π

A

AND then this happened
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What's the likelihood of this tree?

A A
GT

A

A
T

b1

b2
b3

b4

b5 b6

Assume the inner states are given!
What is the likelihood of the tree if we 
Interpret it as Markov diagram?

L
i
 = π

A
 P

AA
(b

1
) P

AA
(b

2
) P

AA
(b

3
) 

P
AT

(b
4
)P

TT
(b

5
) P

TG
(b

6
)

We are multiplying here, because to 
observe the data at the tips, given the 
tree, the initial state must be A  π

A

AND then this happened
AND this
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What's the likelihood of this tree?

A A
GT

A

A
T

b1

b2
b3

b4

b5 b6

Assume the inner states are given!
What is the likelihood of the tree if we 
Interpret it as Markov diagram?

L
i
 = π

A
 P

AA
(b

1
) P

AA
(b

2
) P

AA
(b

3
) 

P
AT

(b
4
)P

TT
(b

5
) P

TG
(b

6
)

We are multiplying here, because to 
observe the data at the tips, given the 
tree, the initial state must be A  π

A

AND then this happened
AND this
AND this
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What's the likelihood of this tree?

A A
GT

A

A
T

b1

b2
b3

b4

b5 b6

Assume the inner states are given!
What is the likelihood of the tree if we 
Interpret it as Markov diagram?

L
i
 = π

A
 P

AA
(b

1
) P

AA
(b

2
) P

AA
(b

3
) 

P
AT

(b
4
)P

TT
(b

5
) P

TG
(b

6
)

We are multiplying here, because to 
observe the data at the tips, given the 
tree, the initial state must be A  π

A

AND then this happened
AND this
AND this
AND this
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What's the likelihood of this tree?

A A
GT

A

A
T

b1

b2
b3

b4

b5 b6

Assume the inner states are given!
What is the likelihood of the tree if we 
Interpret it as Markov diagram?

L
i
 = π

A
 P

AA
(b

1
) P

AA
(b

2
) P

AA
(b

3
) 

P
AT

(b
4
)P

TT
(b

5
) P

TG
(b

6
)

We are multiplying here, because to 
observe the data at the tips, given the 
tree, the initial state must be A  π

A

AND then this happened
AND this
AND this
AND this
AND this
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What's the likelihood of this tree?

A A
GT

A

A
T

b1

b2
b3

b4

b5 b6

Assume the inner states are given!
What is the likelihood of the tree if we 
Interpret it as Markov diagram?

L
i
 = π

A
 P

AA
(b

1
) P

AA
(b

2
) P

AA
(b

3
) 

P
AT

(b
4
)P

TT
(b

5
) P

TG
(b

6
)

We are multiplying here, because to 
observe the data at the tips, given the 
tree, the initial state must be A  π

A

AND then this happened
AND this
AND this
AND this
AND this
AND this
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What's the likelihood of this tree?

A A
GT

I1

I2
I3

b1

b2
b3

b4

b5 b6

However, we don't know the inner states :-(
So the question is: What are the possible 
evolutionary histories that could have given
rise (generated) to the data we observe at
the tips?  
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What's the likelihood of this tree?

A A
GT

A

A
A

b1

b2
b3

b4

b5 b6

It could be this
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What's the likelihood of this tree?

A A
GT

A

A
C

b1

b2
b3

b4

b5 b6

It could be this
OR this
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What's the likelihood of this tree?

A A
GT

A

A
G

b1

b2
b3

b4

b5 b6

It could be this
OR this
OR this
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What's the likelihood of this tree?

A A
GT

A

A
G

b1

b2
b3

b4

b5 b6

It could be this
OR this
OR this
OR this
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What's the likelihood of this tree?

A A
GT

A

A
T

b1

b2
b3

b4

b5 b6

It could be this
OR this
OR this
OR this
OR this
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What's the likelihood of this tree?

A A
GT

A

C
A

b1

b2
b3

b4

b5 b6

It could be this
OR this
OR this
OR this
OR this
OR this
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What's the likelihood of this tree?

A A
GT

A

C
A

b1

b2
b3

b4

b5 b6

It could be this
OR this
OR this
OR this
OR this
OR this
OR this
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What's the likelihood of this tree?

A A
GT

A

G
A

b1

b2
b3

b4

b5 b6

It could be this
OR this
OR this
OR this
OR this
OR this
OR this
OR this
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What's the likelihood of this tree?

A A
GT

T

T
T

b1

b2
b3

b4

b5 b6

It could be this
OR this
OR this
OR this
OR this
OR this
OR this
OR this
…
OR this
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What's the likelihood of this tree?

A A
GT

T

T
T

b1

b2
b3

b4

b5 b6

So the likelihood of the tree is the sum (OR!) over the likelihoods of all possible
assignments of A, C, G, and T (all possible evolutionary histories)
to the inner nodes I1, I2, I3 of the tree.



152

What's the likelihood of this tree?

A A
GT

I1

I2
I3

b1

b2
b3

b4

b5 b6

So the likelihood of the tree is the sum (OR!) over the likelihoods of all possible
assignments of A, C, G, and T (all possible evolutionary histories)
to the inner nodes I1, I2, I3 of the tree. 

There are 4 x 4 x 4 possible assignments in our example 
→ this sounds very compute-intensive :-( 



153

The Felsenstein Pruning Algorithm

A A
GT

I1

I2
I3

b1

b2
b3

b4

b5 b6

Post order traversal
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Felsenstein Pruning

A A
GT

b1

b2
b3

b4

b5 b6

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

conditional likelihood vectors
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Felsenstein Pruning

A A
GT

b1

b2
b3

b4

b5 b6

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P
AA

(b1) P(A)
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Felsenstein Pruning

A A
GT

b1

b2
b3

b4

b5 b6

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P
AA

(b1) P(A) OR

P
AC

(b1) P(C)
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Felsenstein Pruning

A A
GT

b1

b2
b3

b4

b5 b6

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P
AA

(b1) P(A) OR

P
AC

(b1) P(C) OR

P
AG

(b1) P(G)
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Felsenstein Pruning

A A
GT

b1

b2
b3

b4

b5 b6

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P
AA

(b1) P(A) OR

P
AC

(b1) P(C) OR

P
AG

(b1) P(G) OR

P
AT

(b1) P(T)
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Felsenstein Pruning

A A
GT

b1

b2
b3

b4

b5 b6

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P
AA

(b4) P(A)OR

P
AC

(b4) P(C) OR

P
AG

(b4) P(G) OR

P
AT

(b4) P(T)

AND!
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Felsenstein Pruning

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A  C  G  TA  C  G  T

AA
CC
GG
TT

A  C  G  TA  C  G  T

L^(k)

L^(i) L^(j)

AND (left branch/right branch)

Position c
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Felsenstein Pruning

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A  C  G  TA  C  G  T

AA
CC
GG
TT

A  C  G  TA  C  G  T

L^(k)

L^(i) L^(j)

OR (along left branch)

Position c
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Felsenstein Pruning

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A  C  G  TA  C  G  T

AA
CC
GG
TT

A  C  G  TA  C  G  T

L^(k)

L^(i) L^(j)

OR (along right branch)

Position c
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Felsenstein Pruning

A A
GT

b1

b2
b3

b4

b5 b6

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

1.0
0.0
0.0
0.0

0.0
0.0
1.0
0.0

0.0
0.0
0.0
1.0

1.0
0.0
0.0
0.0
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Felsenstein Pruning

A A
GT

b1

b2
b3

b4

b5 b6

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

1.0
0.0
0.0
0.0

0.0
0.0
1.0
0.0

0.0
0.0
0.0
1.0

1.0
0.0
0.0
0.0

Likelihood at the root: L
i
 = π

A
 P(A) +  π

C
 P(C) + π

G
 P(G) + π

T
 P(T)
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An Excellent Tool to viualize and 
revise this concept

● https://phylanim.univ-lyon1.fr/LikelihoodTreeComputation 

https://phylanim.univ-lyon1.fr/LikelihoodTreeComputation
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Why is time-reversibility important?

LS5

LS3

b4b1
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Why is time-reversibility important?

LS5

LS3

b4'
b1'

x
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Why is time-reversibility important?

LS5

LS3

b4':=b1+b4b1' := 0

x
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Why is time-reversibility important?

LS5

LS3

b4':=b1+b4b1' := 0

x

This observation can be applied 
recursively to the tree

→ 
It does not matter at all where we 

place the root!
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What's in the black box P
ij
(t)?

A C

G T

Instantaneous rate matrix R! 

λ
AC

λ
GT

λ
AG

λ
AT

λ
CG

λ
CT
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What's in the black box P
ij
(t)?

A C

G T

What about the probabilities of staying in the current state? 
→ they are given by the properties of continuous Markov chains!
e.g., λ

AA 
=

    
- (λ

AC 
+ λ

AG 
+ λ

AT
) → remember from lecture on Markov models:

rows in the R matrix need to sum to 0

λ
GT

λ
AG

λ
AT

λ
CG

λ
CT

λ
TT

λ
GG

λ
CC

λ
AA
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What's in the black box P
ij
(t)?

A

C

G

T

A           C         G         T

*

*

*

*

Symmetric

λ
AC

λ
AG

λ
AT

λ
CG

λ
CT

λ
GT
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What's in the black box P
ij
(t)?

A

C

G

T

A           C         G         T

*

*

*

*

Symmetric

λ
AC

λ
AG

λ
AT

λ
CG

λ
CT

λ
GT

Diagonal values are 
given by the off-diagonal
values (R matrix property) 
λ

AA 
=

    
- (λ

AC 
+ λ

AG 
+ λ

AT
) 



  
174

What's in the black box P
ij
(t)?

A

C

G

T

A           C         G         T

*

*

*

*

Symmetric

λ
AC

λ
AG

λ
AT

λ
CG

λ
CT

λ
GT

Equilibrium frequency vector π = (πA, πC, πG, πT) where πA  + πC + πG + πT = 1
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The simple Jukes-Cantor model

A

C

G

T

A           C         G         T

*

*

*

* λ λ λ

λ λ

λ

Π = (1/4, 1/4, 1/4, 1/4)
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The Felsenstein 81 model

A

C

G

T

A           C         G         T

*

*

*

* λ λ λ

λ λ

λ

Πi  ≠ Πj
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Kimura 2-parameter model 1980

A

C

G

T

A           C         G         T

*

*

*

* λ ζ λ

ζ λ

ζ

Π = (1/4, 1/4, 1/4, 1/4)
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HKY85

A

C

G

T

A           C         G         T

*

*

*

* λ ζ λ

ζ λ

ζ

Πi  ≠ Πj
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GTR 1986

A

C

G

T

A           C         G         T

*

*

*

* α β γ

δ ε

ζ

Πi  ≠ Πj
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GTR 1986

A

C

G

T

A           C         G         T

*

*

*

* α β γ

δ ε

ζ

Πi  ≠ Πj

Note that these are 
relative rates, their 
Values only matter 
relative to each other,
so we can set ζ := 1.0 
by default
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GTR 1986

A

C

G

T

A           C         G         T

*

*

*

* α β γ

δ ε

1.0

Πi  ≠ Πj

Note that these are 
relative rates, their 
values only matter 
relative to each other,
so we can set ζ := 1.0 
by default. Although the
GTR model has 6 rates, 
it only has 5 free 
parameters!
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Model Hierarchy

Jukes Cantor

GTR

HKY85

Felsenstein81 Kimura 2 parameter

more parametersunequal frequencies
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GTR 1986

A

C

G

T

A           C         G         T

*

*

*

* α β γ

δ ε

1.0

Πi  ≠ Πj

This is a rate matrix, 
time reversibility would
require π

i
r

ij
 = π

j
r

ji
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GTR 1986

A

C

G

T

A           C         G         T

*

*

*

* α β γ

δ ε

1.0

Πi  ≠ Πj

This is a rate matrix, 
time reversibility would
require π

i
r

ij
 = π

j
r

ji

Solution: introduce a
Q matrix Q := diag(π) R

π
T

π
G

π
C

π
A
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GTR 1986

A

C

G

T

A           C         G         T

*

*

*

* α β γ

δ ε

1.0

Πi  ≠ Πj

This is a rate matrix, 
time reversibility would
require π

i
r

ij
 = π

j
r

ji

Solution: introduce a
Q matrix Q := diag(π) R

π
T

π
G

π
C

π
A

Then, π
i
r

ij
 = π

j
r

ji 
holds
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So how do we compute P(t) from Q?

● As we have seen in the lecture on Markov chains: 

P(t) = eQt = I + Qt + 1/2! (Qt)2 + 1/3! (Qt)3 + … 

● but this is unfortunately a matrix exponential :-( 

● I will spare you the details, but in general, e.g., for GTR we 
need to apply an Eigenvector/Eigenvalue decomposition of Q to 
calculate: 

P(t) = U exp(diag(λi)t) U-1

Matrix and inverse matrix of eigenvectors of Q
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So how do we compute P(t) from Q?

● As we have seen in the lecture on Markov chains: 

P(t) = eQt = I + Qt + 1/2! (Qt)2 + 1/3! (Qt)3 + … 

● but this is unfortunately a matrix exponential :-( 

● I will spare you the details, but in general, e.g., for GTR we 
need to apply an Eigenvector/Eigenvalue decomposition of Q to 
calculate: 

P(t) = U exp(diag(λi)t) U-1

Diagonal matrix of eigenvalues of Q, here the exponential function exp() is invoked
on scalar values!
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Likelihood Calculations

● So far, we have only seen how to calculate a likelihood on a 

● given, fixed tree topology 

● with given fixed branch lengths 

● and given, fixed remaining model parameters

● Computing the maximum likelihood score, is much more complicated as it 
requires 

1. functions for optimizing continuous parameters 

2. functions for searching the discrete space of trees 
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Outline – Lecture 10

● Maximum Likelihood – motivation 
● Computing the Likelihood on a tree 
● Computing the Maximum Likelihood on a 

tree
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel

Commonly denoted as Q matrix: 
transition probs for time dt, for time 
t: P(t)=eQt



  
193

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

virtual root: vrvirtual root: vr

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel

Conditional Likelihood
Vectors
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππTT  

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr

Floating-point & memory 
intensive

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel
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Post-order Traversal

virtual root



  
200

Post-order Traversal

virtual root
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Post-order Traversal

virtual root

AGCC

  A   G   C   C
1.0 0.0 0.0 0.0
0.0 0.0 1.0 1.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0
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Post-order Traversal

virtual root
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Post-order Traversal

virtual root

:-)
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What happens when we compute 
this inner vector?

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b
j

b
i

P(b
i
) P(b

j
)

AA
CC
GG
TT

A  C  G  TA  C  G  T
AA
CC
GG
TT

A  C  G  TA  C  G  T

L(k)

L(i)

L(j)

Position c
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Post-order Traversal

virtual root

:-)
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Post-order Traversal

virtual root

:-)
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Post-order Traversal

virtual root

:-)
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Post-order Traversal

virtual root

:-)
:-)
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Post-order Traversal

virtual root

:-)
:-)
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Post-order Traversal

virtual root

:-)
:-)
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Post-order Traversal

virtual root

:-)
:-)

:-)
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Post-order Traversal

virtual root

:-)
:-)

:-)

Overall likelihood: sum over logarithms of per-site likelihoods
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Post-order Traversal

LS4
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3

optimize branch lengthsoptimize branch lengths

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππTT  

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel
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Branch Length Optimization

starting branch



  
216

Branch Length Optimization

starting branch

Essentially we place the 
virtual root into this branch 

here
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Branch Length Optimization

starting branch

Optimization done via 
Newton-Raphson procedure
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Newton Rapshon

● We want to find the branch length b that maximizes the 
likelihood L(b) of the tree 

● For this, we want to know where the first derivative of L(b) is 0

● To achieve this numerically we use the Newton-Raphson 
procedure for root finding deploying the first and second 
derivative of the likelihood L'(b) and L''(b)

● Note that, the likelihood only depends on branch b, all other 
model parameters (Q matrix, base frequencies, tree topology) 
remain fixed 
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Derivatives of L(b)

● To compute the derivatives of L(b), we essentially need to be able 
to compute the derivatives of P(b) since the rest is just sums and 
does not depend on b

● Recall

P(b) = eQb = UeɅbU-1

● thus

(P(b))' = UɅeɅbU-1

● and

(P(b))'' = UɅ2eɅbU-1

● In practice we compute the derivatives of the log likelihood 
log(L(b)), but it is essentially the same (see next slide)  
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Derivatives of log(L(b))

● 1st derivative: L(b)'/L(b) 

● 2nd derivative: (L(b) L(b)'' – (L(b)'')2 ) / L(b)2



  
221

Newton Raphson

Branch length b

1st derivative 
of Likelihood:
L(b)' 

x
1

x
2

Get point x
2 
by tangent at x

1 
which

is given by 2nd  derivative L(b)''

Maximum of L(b)
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Newton Raphson

Branch length b

1st derivative 
of Likelihood:
L(b)' 

x
1

x
2

Get point x
2 
by tangent at x

1 
which

is given by 2nd  derivative L(b)''

Maximum of L(b)

Assumes that function is well-behaved.
Has quadratic convergence!
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An animation
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Branch Length Optimization

starting branch
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Branch Length Optimization

starting branch
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Branch Length Optimization

starting branch
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Branch Length Optimization

starting branch
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Branch Length Optimization

starting branch
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Branch Length Optimization

starting branch
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Branch Length Optimization

starting branch
iterate until 
convergence
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3

optimize model parametersoptimize model parameters

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies
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modelmodel
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3

optimize model parametersoptimize model parameters

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel

We don't need to re-estimate 
model parameters for every 
tree topology as long as the 
tree is reasonable, i.e., non-

random
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3

optimize model parametersoptimize model parameters

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel

Methods used for model parameter 
optimization (other than branch lengths)
1. BFGS 
2. Brent's method 
3. Expectation maximization approaches



  
234

Numerical Optimization Procedures

● See chapters 9 & 10 of: Numerical Recipes in C – The Art of 
Scientific Computing 
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Basic Operations
Maximum Likelihood

● Compute Conditional Likelihood Vector at an inner node

● Compute Likelihood at Virtual Root

● Optimize a Branch Length for a given Branch

● Optimize all Branch Lengths

● Optimize other Model Parameters
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Basic Operations
Maximum Likelihood

● Compute Conditional Likelihood Vector at an inner node

● Compute Likelihood at Virtual Root

● Optimize a Branch Length for a given Branch

● Optimize all Branch Lengths

● Optimize other Model Parameters

The optimizers are the tricky routines! 
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