Introduction to Bioinformatics for Computer Scientists

Lecture 8

Outline

- Last time:
- How to Compute the Likelihood of a tree
- How to compute the Likelihood efficiently: Felsenstein Pruning Algorithm

The Felsenstein Pruning Algorithm

Post order traversal

Felsenstein Pruning

Felsenstein Pruning

AND (left branch/right branch)

$$
\vec{L}_{A}^{(k)}(c)=\left(\sum_{S=A}^{T} P_{A S}\left(b_{i}\right) \vec{L}_{S}^{(i)}(c)\right)^{\prime}\left(\sum_{S=A}^{T} P_{A S}\left(b_{j}\right) \vec{L}_{S}^{(j)}(c)\right)
$$

Felsenstein Pruning

OR (along left branch)

$$
\vec{L}_{A}^{(k)}(c)=\left(\sum_{S=A}^{T} P_{A S}\left(b_{i}\right) \vec{L}_{S}^{(i)}(c)\right)\left(\sum_{S=A}^{T} P_{A S}\left(b_{j}\right) \vec{L}_{S}^{(j)}(c)\right)
$$

Felsenstein Pruning

OR (along right branch)

$$
\vec{L}_{A}^{(k)}(c)=\left(\sum_{S=A}^{T} P_{A S}\left(b_{i}\right) \vec{L}_{S}^{(i)}(c)\right)\left(\sum_{S=A}^{T} P_{A S}\left(b_{j}\right) \vec{L}_{S}^{(j)}(c)\right)
$$

Felsenstein Pruning

Felsenstein Pruning

Likelihood at the root: $L_{i}=\pi_{A} P(A)+\pi_{C} P(C)+\pi_{G} P(G)+\pi_{T} P(T)$

An Excellent Tool to viualize and revise this concept

- https://phylanim.univ-lyon1.fr/LikelihoodTreeComputation

The computation of the likelihood of a site along a tree with four tips.
Let's compute the likelihood of observing site pattern $\{\mathrm{T}, \mathrm{T}, \mathrm{G}, \mathrm{T}\}$ at the four tips of a phylogeny

Computation

$$
\begin{aligned}
& L_{5}^{i}=\left(\sum_{j \in(A, C, G, T)} p_{i j}\left(v_{1}\right) \times L_{1}^{j}\right) \times\left(\sum_{k \in(A, C, G, T)} p_{i k}\left(v_{2}\right) \times L_{2}^{k}\right) \text { where } i \in(A, C, G, T) \\
& L_{5}^{G}=(0.032) \times\left(\left(P_{G A}\left(v_{2}\right) \times L_{2}^{A}\right)+\left(P_{G C}\left(v_{2}\right) \times L_{2}^{C}\right)+\left(P_{G G}\left(v_{2}\right) \times L_{2}^{G}\right)+\left(P_{G T}\left(v_{2} \times L_{2}^{T}\right)\right)\right. \\
& L_{5}^{G}=(0.032) \times\left(\left(P_{G A}(0.25) \times 0.0\right)+\left(P_{G C}(0.25) \times 0.0\right)+\left(P_{G G}(0.25) \times 0.0\right)+\left(P_{G T}(0.25) \times 1.0\right)\right) \\
& L_{5}^{G}=(0.032) \times\left((0.055 \times 0.0)+(0.039 \times 0.0)+\left(P_{G G}(0.25) \times 0.0\right)+\left(P_{G T}(0.25) \times 1.0\right)\right)
\end{aligned}
$$

Why is time-reversibility important?

$$
L=\sum_{S_{4}=A}^{T} \pi_{S_{4}} \sum_{S_{3}=A}^{T} P_{S_{4} S_{3}}\left(b_{1}\right) L_{S_{3}}^{(3)} \sum_{S_{5}=A}^{T} P_{S_{4} S_{5}}\left(b_{4}\right) L_{S_{5}}^{(5)}
$$

Why is time-reversibility important?

$$
L=L^{\prime}=\sum_{S_{4}=A}^{T} \pi_{S_{4}} \sum_{S_{3}=A}^{T} P_{S_{4} S_{3}}\left(b_{1}+x\right) L_{S_{3}}^{(3)} \sum_{S_{5}=A}^{T} P_{S_{4} S_{5}}\left(b_{4}-x\right) L_{S_{5}}^{(5)}
$$

Why is time-reversibility important?

$$
L=L^{\prime}=\sum_{S_{4}=A}^{T} \pi_{S_{4}} \sum_{S_{3}=A}^{T} P_{S_{4} S_{3}}\left(b_{1}+x\right) L_{S_{3}}^{(3)} \sum_{S_{5}=A}^{T} P_{S_{4} S_{5}}\left(b_{4}-x\right) L_{S_{5}}^{(5)}
$$

$$
b_{1}{ }^{\prime}:=0 \quad b_{4}^{\prime}:=b_{1}+b_{4} \quad \square L_{S 5}
$$

Why is time-reversibility important?

Outline

- Last time:
- How to Compute the Likelihood of a tree
- How to compute the Likelihood efficiently: Felsenstein Pruning Algorithm
- Today \& next time
- What is hidden in $P(t)$ - what do the models look like?
- How to compute the Maximum Likelihood score on a tree?
- Advanced substitution models
- Efficiently computing the Likelihood on trees
- Parallel Likelihood computations

What's in the black box $P_{i j}(t) ?$

Instantaneous rate matrix R !

What's in the black box $P_{i j}(t)$?

What about the probabilities of staying in the current state?
\rightarrow they are given by the properties of continuous Markov chains! e.g., $\lambda_{A A}=-\left(\lambda_{A C}+\lambda_{A G}+\lambda_{A T}\right) \rightarrow$ remember from lecture on Markov models: rows in the R matrix need to sum to 0

What's in the black box $P_{i j}(t) ?$

What's in the black box $P_{i j}(t) ?$

Diagonal values are given by the off-diagonal
values (R matrix property)
$\lambda_{A A}=-\left(\lambda_{A C}+\lambda_{A G}+\lambda_{A T}\right)$

What's in the black box $P_{i j}(t) ?$

Equilibrium frequency vector $\pi=\left(\Pi_{A}, \Pi_{C} \Pi_{G}, \Pi_{T}\right)$ where $\Pi_{A}+\Pi_{C}+\Pi_{C}+\Pi_{T}=1$

The simple Jukes-Cantor model

	A	C	G	T
A	*	λ	λ	λ
C		*	λ	λ
G			*	λ
T				*

$$
\Pi=(1 / 4,1 / 4,1 / 4,1 / 4)
$$

The Felsenstein 81 model

	A	C	G	T
A	*	λ	λ	λ
C		*	λ	λ
G			*	λ
T				*

$$
\Pi_{i} \neq \Pi_{j}
$$

Kimura 2-parameter model 1980

HKY85

$$
\Pi_{i} \neq \Pi_{j}
$$

GTR 1986

$$
\Pi_{i} \neq \Pi_{j}
$$

GTR 1986

$$
\Pi_{i} \neq \Pi_{j}
$$

GTR 1986

Note that these are relative rates, their values only matter relative to each other, so we can set $\zeta:=1.0$ by default. Although the GTR model has 6 rates, it only has 5 free parameters!

$$
\Pi_{i} \neq \Pi_{j}
$$

Model Hierarchy

GTR 1986

This is a rate matrix, time reversibility would require $\boldsymbol{\pi} r_{i j}=\pi r_{j i}$

$$
\Pi_{i} \neq \Pi_{j}
$$

GTR 1986

This is a rate matrix, time reversibility would require $\boldsymbol{n r}_{i j}=\pi r_{j i}$ Solution: introduce a Q matrix Q := $\operatorname{diag(п)~} R$

GTR 1986

$$
\Pi_{i} \neq \Pi_{j}
$$ Solution: introduce a Q matrix Q := $\operatorname{diag(п)~} R$

Then, $n r_{i j}=\pi r_{j i j}$ holds

This is a rate matrix, time reversibility would require $\pi r_{i j}=\pi r_{j i}$

So how do we compute $P(t)$ from Q ?

- As we have seen in the lecture on Markov chains:
$P(t)=e^{Q t}=I+Q t+1 / 2!(Q t)^{2}+1 / 3!(Q t)^{3}+\ldots$
- but this is unfortunately a matrix exponential :-(
- I will spare you the details, but in general, e.g., for GTR we need to apply an Eigenvector/Eigenvalue decomposition of Q to calculate:

$$
P(t)=U \exp \left(\operatorname{diag}\left(\lambda_{i}\right) t\right) U^{-1}
$$

Matrix and inverse matrix of eigenvectors of Q

So how do we compute $P(t)$ from Q ?

- As we have seen in the lecture on Markov chains:
$P(t)=e^{Q t}=I+Q t+1 / 2!(Q t)^{2}+1 / 3!(Q t)^{3}+\ldots$
- but this is unfortunately a matrix exponential :-(
- I will spare you the details, but in general, e.g., for GTR we need to apply an Eigenvector/Eigenvalue decomposition of Q to calculate:

$$
P(t)=U \exp \left(\operatorname{diag}\left(\lambda_{j}\right) t\right) U^{-1}
$$

$$
\triangle
$$

Diagonal matrix of eigenvalues of Q, here the exponential function $\exp ()$ is invoked on scalar values!

Likelihood Calculations

- So far, we have only seen how to calculate a likelihood on a
- given, fixed tree topology
- with given fixed branch lengths
- and given, fixed remaining model parameters
- Computing the maximum likelihood score, is much more complicated as it requires

1. functions for optimizing continuous parameters
2. functions for searching the discrete space of trees

Outline

- Last time:
- How to Compute the Likelihood of a tree
- How to compute the Likelihood efficiently: Felsenstein Pruning Algorithm
- Today \& next time
- What is hidden in $\mathrm{P}(\mathrm{t})$ - what do the models look like ?
- How to compute the Maximum Likelihood score on a tree?
- Advanced substitution models
- Efficiently computing the Likelihood on trees
- Parallel Likelihood computations

Maximum Likelihood

Maximum Likelihood

Maximum Likelihood

Length: m

Commonly denoted as Q matrix: transition probs for time $d t$, for time $t: P(t)=e^{Q t}$

Maximum Likelihood

Maximum Likelihood

Maximum Likelihood

virtual root: vr

Maximum Likelihood

Maximum Likelihood

Conditional Likelihood Vectors

Maximum Likelihood

Post-order Traversal

virtual root

Post-order Traversal

virtual root

Post-order Traversal

virtual root

AGCC	
	G C C
1.0	0.00 .00 .0
0.0	0.01 .01 .0
0.0	1.00 .00 .0
	0.00 .00 .0

Post-order Traversal

virtual root

Post-order Traversal

virtual root

What happens when we compute this inner vector?

$$
\vec{L}_{A}^{(k)}(c)=\left(\sum_{S=A}^{T} P_{A S}\left(b_{i}\right) \vec{L}_{S}^{(i)}(c)\right)\left(\sum_{S=A}^{T} P_{A S}\left(b_{j}\right) \vec{L}_{S}^{(j)}(c)\right)
$$

Position c

Post-order Traversal

virtual root

Post-order Traversal

virtual root

Post-order Traversal

virtual root

Post-order Traversal

virtual root

:-)

Post-order Traversal

virtual root

:-)

Post-order Traversal

virtual root

:-)

Post-order Traversal

virtual root

:-)
i-)

:-)

Post-order Traversal

Overall likelihood: sum over logarithms of per-site likelihoods
virtual root
:-)

Post-order Traversal

$$
L=\sum_{S_{4}=A}^{T} \pi_{S_{4}} L_{S_{4}}
$$

Maximum Likelihood

optimize branch lengths

Branch Length Optimization

starting branch

Branch Length Optimization

starting branch

Essentially we place the virtual root into this branch here

Branch Length Optimization

starting branch

Newton Rapshon

- We want to find the branch length b that maximizes the likelihood $L(b)$ of the tree
- For this, we want to know where the first derivative of $L(b)$ is 0
- To achieve this numerically we use the Newton-Raphson procedure for root finding deploying the first and second derivative of the likelihood $L^{\prime}(b)$ and $L^{\prime \prime}(b)$
- Note that, the likelihood only depends on branch b, all other model parameters (Q matrix, base frequencies, tree topology) remain fixed

Derivatives of $L(b)$

- To compute the derivatives of $L(b)$, we essentially need to be able to compute the derivatives of $P(b)$ since the rest is just sums and does not depend on b
- Recall
$P(b)=e^{Q b}=U e^{\wedge b} U^{-1}$
- thus
$(P(b))^{\prime}=U \wedge e^{\wedge b} U^{-1}$
- and
$(P(b))^{\prime \prime}=U \wedge^{2} e^{\wedge b} U^{-1}$
- In practice we compute the derivatives of the log likelihood $\log (L(b))$, but it is essentially the same (see next slide)

Derivatives of $\log (L(b))$

- $1^{\text {st }}$ derivative: $L(b)^{\prime} / L(b)$
- $2^{\text {nd }}$ derivative: $\left(L(b) L(b)^{\prime \prime}-\left(L(b)^{\prime \prime}\right)^{2}\right) / L(b)^{2}$

Newton Raphson

Get point x_{2} by tangent at x_{1} which is given by $2^{\text {nd }}$ derivative $L(b)$ "

Newton Raphson

An animation

Branch Length Optimization

starting branch

Branch Length Optimization

starting branch

Branch Length Optimization

starting branch

Branch Length Optimization

starting branch

Maximum Likelihood

Maximum Likelihood

optimize model parameters

Maximum Likelihood

optimize model parameters
Seq 1 Seq 3

Methods used for model parameter optimization (other than branch lengths)

1. BFGS
2. Brent's method
3. Expectation maximization approaches

Numerical Optimization Procedures

- See chapters 9 \& 10 of: Numerical Recipes in C - The Art of Scientific Computing

Basic Operations Maximum Likelihood

- Compute Conditional Likelihood Vector at an inner node
- Compute Likelihood at Virtual Root
- Optimize a Branch Length for a given Branch
- Optimize all Branch Lengths
- Optimize other Model Parameters

Basic Operations Maximum Likelihood

- Compute Conditional Likelihood Vector at an inner node
- Compute Likelihood at Virtual Root
- Optimize a Branch Length for a given Branch
- Optimize all Branch Lengths
- Optimize other Model Parameters

The optimizers are the tricky routines!

Outline

- Last time:
- How to Compute the Likelihood of a tree
- How to compute the Likelihood efficiently: Felsenstein Pruning Algorithm
- Today \& next time
- What is hidden in $\mathrm{P}(\mathrm{t})$ - what do the models look like ?
- How to compute the Maximum Likelihood score on a tree?
- Advanced substitution models
- Efficiently computing the Likelihood on trees
- Parallel Likelihood computations

Protein Substitution Models

- The GTR Q matrix for protein data has 189 free parameters instead of just 5 (DNA)
- Estimating 189 rate parameters is difficult, time-consuming, and may lead to overparameterizing the model
- Instead, empirical models such as JTT, LG, WAG, MTMAM, etc. are used
- The Q matrices are obtained by jointly optimizing model parameters on a large collection of reference alignments
- The models differ with respect to:
- the amount of data used to obtain them
- the type of data on which the models have been optimized
- e.g., dedicated models for HIV, FLU, Mammals
- the numerical optimization methods used
- Examples of general models:
- LG: Le \& Gascuel: "An Improved General Amino Acid Replacement Matrix"
- WAG: Whelan \& Goldman: "A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach"

Rate Heterogeneity among Sites

- Among-site rate heterogeneity
- Biological phenomenon
\rightarrow different sites/columns evolve at different speeds
- Need to accommodate this in our models

Г-Distribution

Г-Distribution

Discrete Г-Distribution

An Abstract View of Γ

This is the integral of the likelihood we approximate via discretization

$$
\operatorname{LnL}(i)=\log \left(\frac{1}{\mathbf{\Delta}} *\left(L_{0}+L_{1}+L_{2}+L_{3}\right)\right)
$$

An Abstract View of Γ

4 times higher memory consumption

An Abstract View of Γ

4 times more floating point operations

「 Model of Rate Heterogeneity with 4 discrete rates

1	8	U	4
mucmumumins	NI	W	UUSEETE- -2
	MY	M11	
N4	ENHMNMMHILST		
TACETISETITE	AtICutiecche	UACHMULDEC	DUEItCuT
			Mindum
HIMSMMTM	MMMmgnum	WhI	Mry
	सHसMSM1	\$110	श15
nMmNMMMMNHM	MIMMRMIMMNAN	Hactuminder	DUEIIEU
	mhycreater-6		-uctities

Mixture Models

- The Γ model of rate heterogeneity is a simple example of socalled mixture models
- From Wikipedia: "In statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population."
- The 「 model gives us 4 discrete evolutionary rates over which we integrate (add) the likelihood for each site, without assigning a specific rate to a specific site

Mixture Models

- We can also imagine to integrate the likelihood over a set of
- distinct Q matrices
- distinct base frequencies
- or combinations thereof
- The LG protein substitution model is an example thereof:
- It uses 4 distinct empirical Q matrices and 4 distinct sets of base frequencies π over which we integrate just like for the Γ model

An example

$\begin{array}{ll}\text { Travel time observation } & \ldots-\text { Single model_Weibull } \\ \text { Mixture model_GMM2 } & \text {-.- }\end{array}$

Taken from: "Measuring Service Reliability Using Automatic Vehicle Location Data" \rightarrow bus service reliability

Heterotachous Models

One GTR model for the entire tree

Heterotachous Models

Heterotachous Models

What is a partitioned dataset?

Multi-gene or whole-genome alignment

What is a partitioned dataset?

Multi-gene or whole-genome alignment

What is a partitioned dataset?

Multi-gene or whole-genome alignment

What is a partitioned dataset?

		Gene 1	Gene 2	Gene 3
				Gene 4
a_{0}	a_{1}	a_{2}	a_{3}	a_{4}
GTR $_{0}$	GTR $_{1}$	GTR $_{2}$	GTR $_{3}$	GTR $_{4}$

What is a partitioned dataset?

Joint branch length estimate

What is a partitioned dataset?

What is a partitioned dataset?

What is a partitioned dataset?

Models and Parameters

- If we add an additional parameter to a model, the likelihood will become better
- However, this does not mean anything, as
- We might be over-parameterizing
- The key question is if the more complex model yields a different tree topology
- So, how do we determine the best-fit model for a given dataset?

Nested models

- A particular model is said to be nested within a more complex model only if constraining parameter values of the latter yields the former!
- So, the model can only be constrained in one direction to determine if its nested!
- If I need to constrain both models for which I intend to assess nesting, they are not nested.
- Example: The F81 (equal rates, unequal stationary frequencies) and K2P (2 distinct rates, equal stationary frequencies) models are not nested within each other.
\rightarrow This is because fixing the parameter values of either model does not yield the other model
- However, they are both nested within GTR

Model Testing

- If models are nested we can use a likelihood ratio test
- Model A is nested in model B if parameters in model A are a subset of the parameters in model B
- For instance: the Jukes Cantor (JC) model is nested in the General Time Reversible (GTR) model of nucleotide substitution
- $L R=P(D \mid A) / P(D \mid B)=L(A) / L(B)$
- $\Delta=\ln \left(L R^{2}\right)=2(\ln (L(A))-\ln (L(B))$
- Compare Δ to x^{2} distribution with $k_{A}-k_{B}$ degrees of freedom to determine if the Δ is significant or not
- The degrees of freedom difference is the difference in the number of free parameters in the models
- How many free parameters do the JC and GTR models have?

Model Testing

- If models are nested we can use a likelihood ratio test
- Model A is nested in model B if parameters in model A are a subset of the parameters in modn_o
- For instance: th We are only allowed to compare likelihoods on the same data D! (GTR) model of
- $L R=P(D \mid A) / P(D \mid B)$
- $\Delta=\ln \left(L R^{2}\right)=2(\ln (L(f)-\ln (L(B))$
- Compare Δ to x^{2} distribution with $k_{A}-k_{B}$ degrees of freedom to determine if the Δ is significant or not
- The degrees of freedom difference is the difference in the number of free parameters in the models
- How many free parameters do the JC and GTR models have?
\rightarrow JC: 0
\rightarrow GTR: 8

What if Models are not nested?

- One can use other criteria such as
- Akaike Information Criterion (AIC)
- Bayesian Information Criterion (BIC)
- I will spare you the details, but the basic idea always is:
- Compute likelihood of alternative models
- Penalize the more parameter-rich models

Outline

- Last time:
- How to Compute the Likelihood of a tree
- How to compute the Likelihood efficiently: Felsenstein Pruning Algorithm
- Today \& next time
- What is hidden in $\mathrm{P}(\mathrm{t})$ - what do the models look like ?
- How to compute the Maximum Likelihood score on a tree?
- Advanced substitution models
- Efficiently computing the Likelihood on trees
- Parallel Likelihood computations

Data Structures for unrooted Trees

- Unrooted trees with dynamically changing virtual roots need a dedicated tree data structure
- Why can the virtual root positions change dynamically?
- If we apply a topological move (NNI, SPR, TBR) will we have to re-compute all conditional likelihood vectors?

Memory Organization: Conditional Likelihood Vectors with an Unrooted View

Memory Organization: Conditional Likelihood Vectors with a Rooted View

Memory Organization: CLVs with a Rooted View

New Virtual Root

Memory Organization: CLVs with a Rooted View

Memory Organization: Ancestral Vectors with a Rooted View

New Virtual Root

Memory Organization: Tip Vectors

Memory Organization: Tip Vectors

Optimization of Likelihood Calculations

- Use SSE3 \& AVX vector intrinsics
- Also: GPUs, FPGAs
- Special implementations (why?) for computing CLVs:

Optimization of Likelihood Calculations

- Use SSE3 \& AVX vector intrinsics
- Also: GPUs, FPGAs
- Special implementations (why?) for computing CLVs:

A lot of entries will be zero here if i and/or j are tips
\rightarrow simplify calculations

Repeating Patterns

Identical values, two times pattern AG
A.... A....
G G

Repeating Patterns

Detect identical patterns and omit second computation
A.... A....
G G

Repeating Patterns

Also, shorten CLV \rightarrow less memory required

A.... A....

G G

Repeating Patterns (Repeats)

Also, shorten CLV \rightarrow less memory required

A.... A....

G G

Floating Point Numbers

- Machine numbers are an imperfect mapping of the infinite real numbers to a finite number of machine values!

Floating Point Arithmetics: The Root of All Evil

- Computational science mostly relies on floating-point intensive codes
- How do we verify these codes?
- We stand on shaky grounds
- Scientists using those codes assume that there are no bugs
- Double precision arithmetics required for certain applications
- Who knows what de-normalized floating point numbers are?
\rightarrow Please have a look at:
J. Björndalen, O. Anshus: "Trusting floating point benchmarks-are your benchmarks really data-independent?" Applied Parallel Computing. State of the art in Scientific Computing 2010; pp 178-188, Springer. and at my micro-benchmark at:
https://github.com/stamatak/denormalizedFloatingPointNumbers

Floating Point Arithmetics: The Root of All Evil

- Computational science mostly reli

Why is this relevant when e codes talking about Maximum Likelihood?

- How do we verify these codes?
- We stand on shaky grounds
Why is this relevant when
talking about Maximum
Likelihood? e codes
- Scientists using those codes assume that there are no bugs
- Double precision arithmetics required for certain applications
- Who knows what de-normalized floating point numbers are?
\rightarrow Please have a look at:
J. Björndalen, O. Anshus: "Trusting floating point benchmarks-are your benchmarks really data-independent?" Applied Parallel Computing. State of the art in Scientific Computing 2010; pp 178-188, Springer. and at my micro-benchmark at:
https://github.com/stamatak/denormalizedFloatingPointNumbers

Post-order Traversal

Post-order Traversal

Outline

- Last time:
- How to Compute the Likelihood of a tree
- How to compute the Likelihood efficiently: Felsenstein Pruning Algorithm
- Today \& next time
- What is hidden in $\mathrm{P}(\mathrm{t})$ - what do the models look like?
- How to compute the Maximum Likelihood score on a tree?
- Advanced substitution models
- Efficiently computing the Likelihood on trees
- Parallel Likelihood computations

Loop Level Parallelism

 virtual root
$P[i]=f(Q[i], R[i])$

Loop Level Parallelism

virtual root

$P[i]=f(Q[i], R[i])$

Loop Level Parallelism

 virtual root

Loop Level Parallelism

 virtual root

Loop Level Parallelism

virtual root

Parallel Post-order Traversal

Only need to synchronize at the root \rightarrow MPI_Reduce() to calculate: $\Sigma \log \left(l_{i}\right)$
virtual root

Parallel Post-order Traversal

Overall Score Δ
 $\rightarrow+\square$

$\Sigma \log \left(\mathrm{l}_{\mathrm{i}}\right)$

Classic Fork-Join with Busy-Wait

Synchronizations in RAxML with Pthreads

- RAxML Pthreads for a run time of about 10 seconds on 16 cores/threads
- 404 taxa 7429 sites: 194,000 Barriers
- 1481 taxa 1241 sites: 739,000 Barriers
- A paper on performance of alternative PThreads barrier implementations:
S.A. Berger, A. Stamatakis: "Assessment of Barrier Implementions for Fine-Grain Parallel Regions on Current Multi-core Architectures", IEEE Cluster 2010.

Classic Fork-Join with Busy-Wait (model optimization)

Classic Fork-Join with Busy-Wait (model optimization)

Problems start with partitioned datasets!

Parallel Performance Problems

- They all start with partitioned datasets!
- How do we distribute partitions to processors?
- How do we calculate parameter changes?
- How much time does our broadcast take?
- Goal: Keep all processors busy all the time
\rightarrow minimize communication and synchronization!

Example

Blue Gene Red Gene

Sequence 1

Sequence 5

Data Distribution

Orangutan Gorilla Chimp Homo Sapiens AGGA TTTT

Data Distribution

Orangutan Gorilla Chimp Homo Sapiens
 AACG TTTT AAGG TTT- A-GG TTTT AGGA TTTT

Data Distribution

\section*{Orangutan Gorilla Chimp Homo Sapiens
 | AACG | TTTT |
| :--- | :--- |
| AAGG | TTT- |
| A-GG | TTTT |
| AGGA | TTTT |}

Data Distribution I

Data Distribution I

Orangutan Gorilla Chimp Homo Sapiens

AACG TTTT AAGG TTT-A-GG TTTT AGGA TTTT

Works well when we have more partitions than processors:
May lead to load imbalance not all processors obtain equal number of sites! Not all partitions have equal length!

Data Distribution II

Orangutan Gorilla Chimp Homo Sapiens

AACG TTTT
 AAGG TTT-
 A-GG TTTT AGGA TTTT

Works well when we have more processors than partitions:
However we will need to compute: $P(t)=e Q t$ for each partition at each processor!

Data Distribution II

Orangutan Gorilla Chimp Homo Sapiens

Works well when we have more processors than partitions:
However we will need to compute: $P(t)=e Q t$ for each partition at each processor!

Data Distribution II

Orangutan Gorilla

Performance impact depends on number of states in data/dimension of Q

Data Distribution II

Orangutan Gorilla

How do we distribute partitions to processors?

Load Balance I

G0	G1	G2	G3

Load Balance I

Load Balance I

Load Balance I

- The multiprocessor job scheduling problem in phylogenetics
- Problem when \#partitions >> \#cores
- Tested per-site (cyclic/modulo) data distribution versus per partition data distribution
- We used the Longest Processing Time (LPT) heuristics for assigning partitions to processors
- 25 taxa, 220,000 sites, 100 genes
- GAMMA model
naïve: 613 secs

LPT: 550 secs

- CAT model
naïve: 298 secs
LPT: 127 secs
- Larger protein dataset under Γ model of rate heterogeneity: 10-fold performance improvement!
J. Zhang, A. Stamatakis: "The Multi-Processor Scheduling Problem in Phylogenetics", 11th IEEE HICOMB workshop (in conjunction with IPDPS 2012).

LPT heuristics for multi-processor scheduling

- Sort jobs (partitions) by processing length (partition length) in decreasing order
- Remove a job (partition) from the sorted list and assign it to the processor with the earliest end time (the smallest sum of partition lengths/number of sites)
- Repeat until the sorted list is empty
- Upper bound: $4 / 3-1 /(3 p)$ * OPT, where p is the number of processors
- Graham, R. L.: "Bounds on Multiprocessing Timing Anomalies". SIAM Journal on Applied Mathematics 17 (2): 416-429, 1969.
- Remark: LPT works surprisingly well (see our paper on the phylogenetic problem where we also tested other heuristics)

Partitioned Branch Lengths \& other parameters

Load-Balance II

Synchronization Points

- Assume 10 branches
- Each branch requires 10 Newton-Raphson Iterations
- Each NR Iteration requires a synchronization via a reduction operation
- One branch/partition at a time: 100 sync. points, less work (only one partition) per sync. point
- All branches concurrently: 10 sync. points, more work per sync. point
- Branches will need distinct number of operations
- Add convergence state \rightarrow bit vector

Synchronization Points

$$
\begin{aligned}
& \text { Org1 AC GT } \\
& \text { Org2 AC TT }
\end{aligned}
$$

Synchronization Points

$$
\begin{array}{ll|l}
\hline \text { Org1 } & \text { AC } & \text { GT } \\
\text { Org2 } & \text { AC } & \text { TT }
\end{array}
$$

Synchronization Points

$$
\begin{array}{ll|l}
\text { Org1 } & \mathrm{AC} & \mathrm{GT} \\
\text { Org2 } & \mathrm{AC} & \mathrm{TT}
\end{array}
$$

Synchronization Points

$$
\begin{array}{ll|l}
\text { Org1 } & \text { AC } & \text { GT } \\
\text { Org2 } & \text { AC } & \text { TT } \\
\hline
\end{array}
$$

Synchronization Points

$$
\begin{array}{ll|l}
\text { Org1 } & \mathrm{AC} & \mathrm{GT} \\
\text { Org2 } & \mathrm{AC} & \mathrm{TT}
\end{array}
$$

01

Synchronization Points

$$
\begin{array}{ll|l}
\hline \text { Org1 } & \text { AC } & \text { GT } \\
\text { Org2 } & \text { AC } & \text { TT } \\
\hline
\end{array}
$$

In this example: 4 instead of 7 sync points!

Load Balance II

A. Stamatakis, M. Ott: "Load Balance in the Phylogenetic Likelihood Kernel". Proceedings of ICPP 2009, Vienna, Austria, September 2009.

Classic Fork-Join with

Alternative MPI parallelization

