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Introduction to Bioinformatics for 
Computer Scientists

Lecture 9
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Outline

● Last time: 

● What is hidden in P(t) – what do the models look like?
● How to compute the Maximum Likelihood score on a tree?

● Advanced substitution models   
● Efficiently computing the Likelihood on trees on a single 

processor! 
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Outline

● Last time: 

● What is hidden in P(t) – what do the models look like?
● How to compute the Maximum Likelihood score on a tree?

● Advanced substitution models   
● Efficiently computing the Likelihood on trees on a single 

processor! 

● Today 

● Efficiently computing the likelihood in parallel 

● Bayesien Inference and Markov Chain Monte Carlo 
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Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root



  
5

Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

This operation uses ≥ 95% of total 
execution time !
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Loop Level Parallelism

P

Q
R

virtual root
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Parallel Post-order Traversal

virtual root

Only need to synchronize at the root
→ MPI_Reduce() to calculate: Σ log(li)
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Parallel Post-order Traversal

Σ log(li) Σ log(li)

+

Overall Score
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Classic Fork-Join with 
Busy-Wait

Trigger

Barrier

Barrier

0 1 2 3

Compute all vectors in 
Traversal descriptor

Barrier

Trigger

Trigger

Compute all vectors in 
Traversal descriptor

Compute all vectors in 
Traversal descriptor

Broadcast Traversal

Busy
wait

Reduce Σ log(li)

Broadcast Traversal

Reduce Σ log(li)

Broadcast new α params.

Reduce Σ log(li)
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Synchronizations in RAxML with 
Pthreads

● RAxML Pthreads for a run time of about 10 seconds on 16 
cores/threads

● 404 taxa 7429 sites: 194,000 Barriers

● 1481 taxa 1241 sites: 739,000 Barriers

● A paper on performance of alternative PThreads barrier 
implementations: 

S.A. Berger, A. Stamatakis: "Assessment of Barrier 
Implementions for Fine-Grain Parallel Regions on Current 
Multi-core Architectures", IEEE Cluster 2010. 
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Classic Fork-Join with 
Busy-Wait (model optimization)

Trigger

Barrier

Barrier

0 1 2 3

Compute all vectors in 
Traversal descriptor

Barrier

Trigger

Trigger

Compute all vectors in 
Traversal descriptor

Compute all vectors in 
Traversal descriptor

Broadcast Traversal

Reduce Σ log(li)

Broadcast Traversal

Reduce Σ log(li)

Broadcast new α params.

Reduce Σ log(li)

A D

C B

A

C

A B

C D

A B

C D

A B

C D

α:=0.2



  
14

Classic Fork-Join with 
Busy-Wait (model optimization)

Trigger

Barrier

Barrier

0 1 2 3

Compute all vectors in 
Traversal descriptor

Barrier

Trigger

Trigger

Compute all vectors in 
Traversal descriptor

Compute all vectors in 
Traversal descriptor

Broadcast Traversal

Reduce Σ log(li)

Broadcast Traversal

Reduce Σ log(li)

Broadcast new α params.

Reduce Σ log(li)

A D

C B

A

C

A B

C D

A B

C D

A B

C D

α:=0.2

For good parallel performance: the 
broadcast must be fast!
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Problems start with partitioned 
datasets!

Gene 0 Gene 1 Gene 4Gene 3Gene 2

α0

GTR0

α4

GTR4

α3

GTR3

α2

GTR2

α1

GTR1

Same underlying tree
topology!
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Parallel Performance Problems

● They all start with partitioned datasets!

● How do we distribute partitions to processors?

● How do we calculate parameter changes?

● How much time does our broadcast take?

● Goal: Keep all processors busy all the time 

→ minimize communication and synchronization!
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Example

Blue Gene      Red Gene 

Sequence 1

Sequence 5
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Data Distribution

OrangutanOrangutan AACG TTTT AACG TTTT 
Gorilla Gorilla AAGG TTT- AAGG TTT- 
ChimpChimp A-GG TTTT A-GG TTTT 
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT 

CPU

cache

CPU

cache

Shared    memory
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Data Distribution
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Data Distribution

OrangutanOrangutan AACG TTTT AACG TTTT 
Gorilla Gorilla AAGG TTT- AAGG TTT- 
ChimpChimp A-GG TTTT A-GG TTTT 
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT 

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Partitioned data distribution is not 
that trivial!
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Data Distribution I
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Data Distribution I

OrangutanOrangutan AACG TTTT AACG TTTT 
Gorilla Gorilla AAGG TTT- AAGG TTT- 
ChimpChimp A-GG TTTT A-GG TTTT 
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT 

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we 
have more partitions
than processors:
May lead to load imbalance not all 
processors obtain equal number of sites!
Not all partitions have equal length!
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Data Distribution II

OrangutanOrangutan AACG TTTT AACG TTTT 
Gorilla Gorilla AAGG TTT- AAGG TTT- 
ChimpChimp A-GG TTTT A-GG TTTT 
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT 

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we 
have more processors
than partitions:
However we will need to compute: 
P(t)=eQt for each partition at each 
processor! 
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Data Distribution II

OrangutanOrangutan AACG TTTT AACG TTTT 
Gorilla Gorilla AAGG TTT- AAGG TTT- 
ChimpChimp A-GG TTTT A-GG TTTT 
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT 

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we 
have more processors
than partitions:
However we will need to compute: 
P(t)=eQt for each partition at each 
processor! 
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2
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Data Distribution II

OrangutanOrangutan AACG TTTT AACG TTTT 
Gorilla Gorilla AAGG TTT- AAGG TTT- 
ChimpChimp A-GG TTTT A-GG TTTT 
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT 

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we 
have more processors
than partitions:
However we will need to compute: 
P(t)=eQt for each partition at each 
processor! 

eQ
1
t eQ

2
t eQ

2
teQ

1
t

Performance impact depends 
on number of states in 
data/dimension of Q
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Data Distribution II

OrangutanOrangutan AACG TTTT AACG TTTT 
Gorilla Gorilla AAGG TTT- AAGG TTT- 
ChimpChimp A-GG TTTT A-GG TTTT 
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT 

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we 
have more processors
than partitions:
However we will need to compute: 
P(t)=eQt for each partition at each 
processor! 

eQ
1
t eQ

2
t eQ

2
teQ

1
t

How do we distribute partitions to 
processors?
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Load Balance I

P0 P1

G0 G1 G2 G3
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Load Balance I

P0 P1
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Load Balance I

P0 P1

Find the partition-to-processor 
assignment such that the 
maximum number of sites per 
processor is minimized 
→ this is NP-hard
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Load Balance I

● The multiprocessor job scheduling problem in phylogenetics

– Problem when #partitions >> #cores

– Tested per-site (cyclic/modulo) data distribution versus per partition data distribution

– We used the Longest Processing Time (LPT) heuristics for assigning partitions to 
processors

– 25 taxa, 220,000 sites, 100 genes
● GAMMA model

naïve: 613 secs

LPT: 550 secs
● CAT model

naïve: 298 secs

LPT: 127 secs

– Larger protein dataset under Г model of rate heterogeneity: 10-fold performance 
improvement!

J. Zhang, A. Stamatakis: "The Multi-Processor Scheduling Problem in Phylogenetics", 
11th IEEE HICOMB workshop (in conjunction with IPDPS 2012). 
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LPT heuristics for multi-processor 
scheduling

● Sort jobs (partitions) by processing length (partition length) in 
decreasing order

● Remove a job (partition) from the sorted list and assign it to the 
processor with the earliest end time (the smallest sum of 
partition lengths/number of sites)

● Repeat until the sorted list is empty

● Upper bound: 4/3 – 1/(3p) * OPT, where p is the number of 
processors

● Graham, R. L.: "Bounds on Multiprocessing Timing Anomalies". 
SIAM Journal on Applied Mathematics 17 (2): 416–429, 1969.

● Remark: LPT works surprisingly well (see our paper on the 
phylogenetic problem where we also tested other heuristics)



  
32

Partitioned Branch Lengths & other 
parameters
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Load-Balance II

Zoom
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Synchronization Points

● Assume 10 branches 

● Each branch requires 10 Newton-Raphson Iterations

● Each NR Iteration requires a synchronization via a reduction operation

● One branch/partition at a time: 100 sync. points, less work (only one 
partition) per sync. point

● All branches concurrently: 10 sync. points, more work per sync. point

● Branches will need distinct number of operations

● Add convergence state → bit vector
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Synchronization Points

Org1 AC GT
Org2 AC TT
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Synchronization Points

Org1 AC GT
Org2 AC TT
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Synchronization Points

00

Org1 AC GT
Org2 AC TT
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Synchronization Points

00

00

Org1 AC GT
Org2 AC TT
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Synchronization Points

00

01

00

Org1 AC GT
Org2 AC TT
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Synchronization Points

00

01

00

11

In this example: 4 instead of 7 sync points!

Org1 AC GT
Org2 AC TT
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Load Balance II

A. Stamatakis, M. Ott: "Load Balance in the Phylogenetic Likelihood Kernel". 
Proceedings of ICPP 2009, Vienna, Austria, September 2009.
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Classic Fork-Join with 
Busy-Wait

Trigger

Barrier

Barrier

0 1 2 3

Compute all vectors in 
Traversal descriptor

Barrier

Trigger

Trigger

Compute all vectors in 
Traversal descriptor

Compute all vectors in 
Traversal descriptor

Broadcast Traversal

Reduce Σ log(li)

Broadcast Traversal

Reduce Σ log(li)

Broadcast new α params.

Reduce Σ log(li)

A D

C B

A

C

A B

C D

A B

C D

A B

C D

α:=0.2

For good parallel performance: the 
broadcast must be fast!
Remember: 10 secs 16 cores approx 
500,000 times.
What happens if we have 1000 
partitions and propose 1000 new 
alpha parameters?
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Alternative MPI parallelization

? ?

MPI_Reduce()
MPI_Bcast()

MPI_Reduce()
MPI_Bcast()

-55000
-55000

-55001 -55001

P0 P1

E
xecut ion 

tim
e
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Outline

● Last time: 

● What is hidden in P(t) – what do the models look like?
● How to compute the Maximum Likelihood score on a tree?

● Advanced substitution models   
● Efficiently computing the Likelihood on trees on a single 

processor! 

● Today 

● Efficiently computing the likelihood in parallel 

● Bayesien Inference and Markov Chain Monte Carlo 
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Outline – Bayesian Inference

● Bayesian statistics

● Monte-Carlo simulations

● Markov-Chain Monte-Carlo (MCMC) methods

● Metropolis-coupled MCMC-methods

● Some phylogenetic proposals 

● Reversible jump MCMC 
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Bayesian and Maximum Likelihood 
Inference

● In phylogenetics Bayesian and ML (Maximum Likelihood) 
methods have a lot in common

● Computationally, both approaches re-evaluate the phylogenetic 
likelihood over and over and over again for different tree 
topologies, branch lengths, and model parameters

● Bayesian and ML codes spend approx. 80-95% of their total run 
time in likelihood calculations on trees

● Bayesian methods sample the posterior probability distribution

● ML methods strive to find a point estimate that maximizes the 
likelihood
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Bayesian Phylogenetic Methods

● The methods used perform stochastic searches, that is, they do 
not strive to maximize the likelihood, but rather integrate over it

● Thus, no numerical optimization methods for model parameters 
and branch lengths are needed, parameters are proposed at 
random

● It is substantially easier to infer trees under complex models 
using Bayesian statistics than using Maximum Likelihood
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A Review of Probabilities

Conditional Probability: 

Pr(A|B) = Pr(A,B) / Pr(B)

Joint Probability: 

Pr(A,B) = Pr(A|B) Pr(B)

and

Pr(A,B) = Pr(B|A) Pr(A)

Problem: 

If I can compute Pr(A|B) how can I get Pr(B|A)?
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A Review of Probabilities

Conditional Probability: 

Pr(A|B) = Pr(A,B) / Pr(B)

Joint Probability: 

Pr(A,B) = Pr(A|B) Pr(B)

and

Pr(A,B) = Pr(B|A) Pr(A)

Bayes Theorem:

Pr(B|A) = Pr(A,B) / Pr(A) 
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A Review of Probabilities

Conditional Probability: 

Pr(A|B) = Pr(A,B) / Pr(B)

Joint Probability: 

Pr(A,B) = Pr(A|B) Pr(B)

and

Pr(A,B) = Pr(B|A) Pr(A)

Bayes Theorem:

Pr(B|A) = Pr(A|B) Pr(B) / Pr(A) 
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Bayes Theorem

Pr(B|A) = Pr(A|B) Pr(B) / Pr(A)

Observed outcomeUnobserved outcome
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Bayes Theorem

Pr(B|A) = Pr(A|B) Pr(B) / Pr(A)

Posterior probability

likelihood

Prior probability Marginal probability
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Bayes Theorem: Phylogenetics

Pr(Tree,Params|Alignment) = Pr(Alignment|Tree, Params) Pr(Tree,Params) / Pr(Alignment)

Posterior probability

likelihood

Prior probability
Marginal probability

Posterior probability: distribution over all possible trees and all model parameter values
Likelihood: does the alignment fit the tree and model parameters? 
Prior probability: introduces prior knowledge/assumptions about the probability distribution 
of trees and model parameters (e.g., GTR rates, α shape parameter).

For instance, we typically assume that all possible tree topologies are equally probable 
→ uniform prior

Marginal probability: how do we obtain this?
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Bayes Theorem: Phylogenetics

Pr(Tree|Alignment) = Pr(Alignment|Tree) Pr(Tree) / Pr(Alignment)

Posterior probability

likelihood

Prior probability
Marginal probability

Marginal probability: Assume that our only model parameter is the tree and marginalizing 
means summing over all unconditional probabilities, thus 
Pr(Alignment) 
can be written as 
Pr(Alignment) = Pr(Alignment, t

0
) + Pr(Alignment,t

1
) + … + Pr(Alignemnt, t

n
) 

where n+1 is the number of possible trees!
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Bayes Theorem: Phylogenetics

Pr(Tree|Alignment) = Pr(Alignment|Tree) Pr(Tree) / Pr(Alignment)

Posterior probability

likelihood

Prior probability
Marginal probability

Marginal probability: Assume that our only model parameter is the tree and marginalizing 
means summing over all unconditional probabilities, thus 
Pr(Alignment) 
can be written as 
Pr(Alignment) = Pr(Alignment, t

0
) + Pr(Alignment,t

1
) + … + Pr(Alignemnt, t

n
) 

where n+1 is the number of possible trees!
This can be re-written as 
 Pr(Alignment) = Pr(Alignment|t

0
) Pr(t

0
) +  Pr(Alignment|t

1
) Pr(t

1
)+ … + Pr(Alignment|t

n
) Pr(t

n
)



  
56

Bayes Theorem: Phylogenetics
Pr(Tree|Alignment) = Pr(Alignment|Tree) Pr(Tree) / Pr(Alignment)

Posterior probability

likelihood

Prior probability
Marginal probability

Marginal probability: 
 Pr(Alignment) = Pr(Alignment|t

0
) Pr(t

0
) +  Pr(Alignment|t

1
) Pr(t

1
)+ … + Pr(Alignment|t

n
) Pr(t

n
)

Now, we have all the ingredients for computing Pr(Tree|Alignment), however computing 
Pr(Alignment) is prohibitive due to the large number of trees!

With continuous parameters the above equation for obtaining the marginal probability becomes 
an integral. Usually, all parameters we integrate over (tree topology, model parameters, etc.) are 
lumped into a parameter vector denoted by θ

likelihood 

Prior := 1 / (n+1) 
→ this is a uniform prior! 
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Bayes Theorem General Form

f(θ|A) = f(A|θ) f(θ) / ∫f(θ)f(A|θ)dθ

Posterior distribution
Posterior probability

likelihood 

Prior distribution
Prior Probability

Marginal likelihood
Normalization constant

We know how to compute f(A|θ) → the likelihood of the tree 

Problems:
Problem 1: f(θ) is given a priori, but how do we chose an appropriate distribution?
→ biggest strength and weakness of Bayesian approaches
Problem 2: How can we calculate/approximate  ∫f(θ)f(A|θ)dθ ?
→ to explain this we need to introduce additional machinery

However, let us first look at an example for f(θ|A) in phylogenetics
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Bayes Theorem General Form

f(θ|A) = f(A|θ) f(θ) / ∫f(θ)f(A|θ)dθ

Note that, in the continuous case f() is called probability density function
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Probability Density Function

Properties: 
1. f(x) > 0 for all allowed values x
2.The area under f(x) is 1.0
3.The probability that x falls into an interval (e.g. 0.2 – 0.3) is given by the 
integral of f(x) over this interval



  
60

An Example
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An Example

1.0

Data (observations → sequences)

1.0

probability

Parameter space → 3 distinct tree topologies

Prior distribution

Posterior distributionposterior
probability
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An Example

1.0

1.0

probability

Parameter space → 3 distinct tree topologies

Note that, this is a discrete 
Distribution, since we only consider 

the trees as parameters!

1/3 1/3 1/3

posterior
probability
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An Example

1.0

probability

What happens to the posterior 
probability if we don't have enough data,

e.g., an alignment with a single site?

1/3 1/3 1/3

posterior
probability

?
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An Example

Parameter space of θ

Include additional model parameters such as branch lengths,GTR rates, and
the α-shape paremeter of the Г distribution into the model:  
θ = (tree, α, branch-lengths, GTR-rates)

f(θ|A)

posterior
probability

Tree 1 tree 2 tree 3
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An Example

Marginal probability distribution of trees 

We can look at this distribution for any parameter of interest by marginalizing 
(integrating out) all other parameters.
Here we focus on the tree topology.

f(θ|A)

posterior
probability

Tree 1 tree 2 tree 3

20%
48%

32%
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An Example

Marginal probability distribution of trees 

We can look at this distribution for any parameter of interest by marginalizing 
(integrating out) all other parameters.
Here we focus on the tree topology.

f(θ|A)

posterior
probability

Tree 1 tree 2 tree 3

20%
48%

32%

We obtain the probability
by integrating over this
Interval!
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Marginalization

t
1

t
2

t
3

α
1
= 0.5 0.10 0.07 0.12 0.29

α
2
= 1.0 0.05 0.22 0.06 0.33

α
3
 = 5.0 0.05 0.19 0.14 0.38

0.20 0.48 0.32 1.0

trees

Three discrete
Values of the 
α-shape parameter

Joint probabilities
Marginal probabilities of trees

Marginal probabilities
of α values
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An Example

Marginal probability distibution of α 

We can look at this distribution for any parameter of interest by marginalizing 
(integrating out) all other parameters.
Here we focus on the three discrete α values.

f(θ|A)

posterior
probability

α = 5.0

29% 33% 38%

α = 1.0α = 0.5
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Bayes versus Likelihood

ML: Joint estimation
Bayesian: Marginal estimation

See: Holder & Lewis 
“Phylogeny Estimation: traditional & 
Bayesian Approaches” Link to paper

likelihood

http://www.ncbi.nlm.nih.gov/pubmed/12671658
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Outline

● Bayesian statistics

● Monte-Carlo simulation & integration

● Markov-Chain Monte-Carlo methods

● Metropolis-coupled MCMC-methods

● Some phylogenetic proposals 

● Reversible jump MCMC 
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Bayes Theorem General Form

f(θ|A) = (likelihood * prior) / ouch

Marginal likelihood
Normalization constant
→ difficult to calculate

We know how to compute f(A|θ) → the likelihood of the tree 

Problems:
Problem 1: f(θ) is given a priori, but how do we chose an appropriate distribution?
→ biggest strength and weakness of Bayesian approaches
Problem 2: How can we calculate/approximate  ∫f(θ)f(A|θ)dθ
→ to explain this we need to introduce additional machinery to design methods for 

numerical integration
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How can we compute this integral?

Parameter space of θ

f(θ|A)
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The Classic Example

● Calculating π (the geometric constant!) with Monte-Carlo 

Procedure:
1. Randomly throw points onto the 
rectangle n times
2. Count how many points fall into 
the circle n

i

3. determine π as the ratio n / n
i

→ this yields an approximation of 
the ratio of the areas (the square 
and the circle)
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Monte Carlo Integration

● Method for numerical integration of m-dimensional integrals over R: 

∫f(θ)dθ ≈ 1/N Σ f(θi) 

where θ is from domain Rm

● More precisely, if the integral ∫ is defined over a domain/volume V 
the equation becomes:  V * 1/N * Σ f(θi)

● Key issues:

● Monte Carlo simulations draw samples θi of function f() 
completely at random → random grid

● How many points do we need to sample for a 'good' 
approximation?

● Domain Rm might be too large for random sampling!
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Outline

● Bayesian statistics

● Monte-Carlo simulation & integration

● Markov-Chain Monte-Carlo methods

● Metropolis-coupled MCMC-methods

● Some phylogenetic proposals 

● Reversible jump MCMC 
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How can we compute this integral?

Parameter space of θ

f(θ|A)

Monte-Carlo Methods: randomly sample data-points in this
huge parameter space to approximate the interval



  
77

How can we compute this integral?

Parameter space of θ

f(θ|A)
In which parts of the distribution are we interested?

Posterior 
probability
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Distribution Landscape

Parameter space of θ

f(θ|A)

Posterior 
probability

In which parts of the distribution are we interested?

Areas of high posterior
probability
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Distribution Landscape

Parameter space of θ

f(θ|A)

Posterior 
probability

In which parts of the distribution are we interested?

How can we get a 
sample faster?
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Distribution Landscape

Parameter space of θ

f(θ|A)

Posterior 
probability

In which parts of the distribution are we interested?

How can we get a 
sample faster? → 
Markov Chain Monte Carlo
Methods
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Distribution Landcsape

Parameter space of θ

f(θ|A)

Posterior 
probability

In which parts of the distribution are we interested?

Higher sample density Higher sample density
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Distribution Landcsape

Parameter space of θ

f(θ|A)

Posterior 
probability

In which parts of the distribution are we interested?

Higher sample density Higher sample density

Fewer misses
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Markov-Chain Monte-Carlo

Parameter space of θ

f(θ|A)

Posterior 
probability

Higher sample density Higher sample density

MCMC → biased random walks: the probability to evaluate/find a sample in an area
with high posterior probability is proportional to the posterior distribution
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Markov-Chain Monte-Carlo

● Idea: Move the grid/samples into regions of high probability

● Construct a Markov Chain that generates samples such that 
more time is spent (more samples are evaluated) in the most 
interesting regions of the state space

● MCMC can also be used for hard CS optimization problems, for 
instance, the knapsack problem

● Note that, MCMC is similar to Simulated Annealing → there's no 
time to go into the details though here!
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The Robot Metaphor

Crete, December 2019



  
86

The Robot Metaphor
● Drop a robot onto an unknown planet to explore its landscape

● Teaching idea and slides adapted from Paul O. Lewis

Uphill steps → always accepted

Small downhill steps
 → usually accepted Huge downhill steps 

→ almost never accepted

elevation
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How to accept/reject proposals

● Decision to accept/reject a proposal to go from                            
Point 1 → Point 2 is based on the ratio R of posterior densities 
of the two points/samples

R = Pr(Point2|data) / Pr(point1|data) =

(Pr(Point2)Pr(data|point2) / Pr(data)) / (Pr(Point1)Pr(data|point1) / Pr(data))

= Pr(point2)Pr(data|point2) / Pr(point1)Pr(data|point1)
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How to accept/reject proposals

● Decision to accept/reject a proposal to go from                        
Point 1 → Point 2 is based on the ratio R of posterior densities 
of the two points/samples

R = Pr(Point2|data) / Pr(point1|data) =

(Pr(Point2)Pr(data|point2) / Pr(data)) / (Pr(Point1)Pr(data|point1) / Pr(data))

= Pr(point2)Pr(data|point2) / Pr(point1)Pr(data|point1)

The marginal probability of the data cancels out!
Phew, we don't need to compute it.
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How to accept/reject proposals

● Decision to accept/reject a proposal to go from                        
Point 1 → Point 2 is based on the ratio R of posterior densities 
of the two points/samples

R = Pr(Point2|data) / Pr(point1|data) =

(Pr(Point2)Pr(data|point2) / Pr(data)) / (Pr(Point1)Pr(data|point1) / Pr(data)) =

(Pr(point2)/Pr(point1)) * (Pr(data|point2) / Pr(data|point1))

Prior ratio: for uniform priors this is 1 !
Likelihood ratio
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The Robot Metaphor

● Drop a robot onto an unknown planet to explore its landscape

At 1m, proposed to go to 2
Ratio = 2/1 → accept

At 10 m, go down to 9 m
Ratio: 9/10 = 0.9 → accept with 
probability 90%

At 8 m, go down to 1m
Ratio: 1/8 = 0.125 → accept 
with probability 12.5%

elevation
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Distributions

● The target distribution is the posterior distribution we are trying 
to sample (integrate over)!

● The proposal distribution decides which point (how far/close) in 
the landscape to randomly go to/try next:

→ The choice has an effect on the efficiency of the MCMC 
algorithm, that is, how fast it will get to these interesting areas we 
want to sample



  
92

The Robot Metaphor

Target distribution/
posterior probability

Proposal distribution: how far 
Left or right will we usually go?
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The Robot Metaphor

Target distribution/
posterior probability

Proposal distribution: 
with smaller variance → 
what happens?
Pros: Seldom refuses a step
Cons: smaller steps, more steps 
required for exploration
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The Robot Metaphor

Target distribution/
posterior probability

Proposal distribution: 
with larger variance → 
What happens?
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The Robot Metaphor

Target distribution/
posterior probability

Proposal distribution: 
with larger variance → 
what happens?
Pros: can cover a large area 
quickly
Cons: lots of steps will be rejected
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The Robot Metaphor

Target distribution/
posterior probability

A proposal distribution that 
balances pros & cons yields
'good mixing'



  
97

Mixing

● A well-designed chain will require a few steps until reaching 
convergence, that is, approximating the underlying probability 
density function 'well-enough' from a random starting point

● It is a somewhat fuzzy term, refers to the proportion of accepted 
proposals (acceptance ratio) generated by a proposal mechanism 
→ should be neither too low, nor too high

● The real art in designing MCMC methods consists 

● building & tuning good proposal mechanisms
● selecting appropriate proposal distributions

● such that they quickly approximate the distribution we want to sample 
from 
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The Robot Metaphor

Target distribution/
posterior probability

When the proposal distribution is
symmetric, that is, the probability 
of moving left or right is the same,
we use the Metropolis algorithm
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The Metropolis Algorithm

● Metropolis et al. 1953 http://www.aliquote.org/pub/metropolis-et-al-1953.pdf 

● Initialization: Choose an arbitrary point θ0 as first sample

● Choose an arbitrary probability density Q(θi+1|θi ) which suggests a candidate for the next 
sample θi+1 given the previous sample θi. 

● For the Metropolis algorithm, Q() must be symmetric:

it must satisfy Q(θi+1|θi ) = Q(θi|θi+1) 

● For each iteration i:

● Generate a candidate θ* for the next sample by picking from the distribution Q(θ*|θi )

● Calculate the acceptance ratio R = Pr(θ*)Pr(data|θ*) / Pr(θi )Pr(data/θi )

– If R ≥ 1, then θ* is more likely than θi   → automatically accept the candidate by setting  θi+1 := 
θ* 

– Otherwise, accept the candidate θ* with probability R →  if the candidate is rejected: θi+1 := θi

http://www.aliquote.org/pub/metropolis-et-al-1953.pdf
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The Metropolis Algorithm

● Metropolis et al. 1953 http://www.aliquote.org/pub/metropolis-et-al-1953.pdf 

● Initialization: Choose an arbitrary point θ0 as first sample

● Choose an arbitrary probability density Q(θi+1|θi ) which suggests a candidate for the next 
sample θi+1 given the previous sample θi. 

● For the Metropolis algorithm, Q() must be symmetric:

it must satisfy Q(θi+1|θi ) = Q(θi|θi+1) 

● For each iteration i:

● Generate a candidate θ* for the next sample by picking from the distribution Q(θ*|θi )

● Calculate the acceptance ratio R = Pr(θ*)Pr(data|θ*) / Pr(θi )Pr(data/θi )

– If R ≥ 1, then θ* is more likely than θi   → automatically accept the candidate by setting  θi+1 := 
θ* 

– Otherwise, accept the candidate θ* with probability R →  if the candidate is rejected: θi+1 := θi

Conceptually this is the same Q
we saw for substitution models 
and in the Markov Chain lecture!

http://www.aliquote.org/pub/metropolis-et-al-1953.pdf
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Phylogenetic Metropolis Algorithm  

● Initialization: Choose a random tree with random branch lengths as first sample

● For each iteration i:

● Propose either

– a new tree topology 

– a new branch length

and re-calculate the likelihood
● Calculate the acceptance ratio of the proposal

● Accept the new tree/branch length or reject it

● Print current tree with branch lengths to file only every k (e.g. 1000) iterations 

→ to generate a sample from the chain

→ to avoid writing TBs of files

→ also known as thinning

● Summarize the sample using means, histograms, credible intervals, consensus trees, 
etc.
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Uncorrected Proposal Distribution
A Robot in 3D 

Example: MCMC proposed moves to
the right 80% of the time without Hastings 
correction for acceptance probability!

Peak area
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Hastings Correction

Target distribution/
posterior probability

We need to decrease chances to 
move to the right by 0.5 and 
Increase chances to move to the 
left by factor 2 to compensate for
the asymmetry!1/3 2/3
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Hastings Correction

R = (Pr(point2)/Pr(point1)) * (Pr(data|point2)/Pr(data|point1)) * (Q(point1|point2) / Q(point2|point1))

Prior ratio: for uniform priors this is 1 !

Likelihood ratio

Hastings ratio: if Q is symmetric
Q(point1|point2) = Q(point2|point) and 
the hastings ratio is 1 → we obtain the 
normal Metropolis algorithm
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Hastings Correction
more formally

R = (f(θ*)/f(θi )) * (f(data|θ*)/f(data|θi )) * (Q(θi |θ*) / Q(θ*|θi ))

Prior ratio

Likelihood ratio

Hastings ratio
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Hastings Correction is not trivial

● Problem with the equation for the hastings correction 

● M. Holder, P. Lewis, D. Swofford, B. Larget.  2005.        
Hastings Ratio of the LOCAL Proposal Used in Bayesian 
Phylogenetics. Systematic Biology. 54:961-965. 
http://sysbio.oxfordjournals.org/content/54/6/961.full 

“As part of another study, we estimated the marginal likelihoods 
of trees using different proposal algorithms and discovered 
repeatable discrepancies that implied that the published 
Hastings ratio for a proposal mechanism used in many 
Bayesian phylogenetic analyses is incorrect.”

● Incorrect Hastings ratio used from 1999-2005

http://sysbio.oxfordjournals.org/content/54/6/961.full
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Back to Phylogenetics

A

B

C

D

E

A

B

C

D

E

A
C

D

A

E

D

C

B

A

B

C

E

D

A

C

E

D

B

A

B

D

C

E

What's the posterior probability of bipartition AB|CDE?
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Back to Phylogenetics

A

B

C

D

E

A

B

C

D

E

A
C

D

A

E

D

C

B

A

B

C

E

D

A

C

E

D

B

A

B

D

C

E

What's the posterior probability of bipartition AB|CDE?
We just count from the sample generated by MCMC, here it's 3/5 → 0.6
This approximates the true proportion (posterior probability) of bipartition AB|CDE 
if we have run the chain long enough and if it has converged
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MCMC in practice

Frequency of AB|CDE

generations

convergence

Burn-in → discarded from our final sample

Random
starting point
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Convergence

● How many samples do we need to draw to obtain an accurate 
approximation?

● When can we stop drawing samples?

● Methods for convergence diagnosis

→ we can never say that a MCMC-chain has converged

→ we can only diagnose that it has not converged

→ a plethora of tools for convergence diagnostics for 
phylogenetic MCMC



  
111

Convergence

Entire landscape

Likelihood 
score

Likelihood 
Score output
MCMC method

Area of apparent
convergence

Zoom in
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Solution: Run Multiple Chains

Robot 1

Robot 2
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Outline

● Bayesian statistics

● Monte-Carlo simulation & integration

● Markov-Chain Monte-Carlo methods

● Metropolis-coupled MCMC-methods

● Some phylogenetic proposals 

● Reversible jump MCMC 
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Heated versus Cold Chains

Robot 1

Robot 2

Cold chain: sees 
landscape as is

Hot chain: sees a 
Flatter version of the 
same landscape → 
Moves more easily 
between peaks
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Known as MCMCMC

● Metropolis-Coupled Markov-Chain Monte Carlo

● Run several chains simultaneously

● 1 cold chain (the one that samples)
● Several heated chains

● Heated chain robots explore the parameter space in larger 
steps

● To flatten the landscape the acceptance ratio R is modified as 
follows: R1/1+H where H is the so-called temperature 

– For the cold chain H := 0.0
– Setting the temperature for the hot chains is a bit of woo-

do 
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Heated versus Cold Chains

Robot 1: cold

Robot 2: hot

Exchange information every now and then
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Heated versus Cold Chains

Robot 1: hot

Robot 2: cold

Swap cold/hot states to better sample 
this nice peak here
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Heated versus Cold Chains

Robot 1: hot

Robot 2: cold

Decision on when to swap is a bit more 
complicated!
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Heated versus Cold Chains

Robot 1: hot

Robot 2: cold

Only the cold robot actually emits states (writes samples to file)



  
120

A few words about priors

● Prior probabilities convey the scientist's beliefs, before having 
seen the data

● Using uninformative prior probability distributions (e.g., uniform 
priors, also called flat priors)

→  differences between prior and posterior distribution are 
attributable to likelihood differences

● Priors can bias an analysis 

● For instance, we could chose an arbitrary prior distribution for 
branch lengths in the range [1.0,20.0]

→ what happens if branch lengths are much shorter?
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Outline 

● Bayesian statistics

● Monte-Carlo simulation & integration

● Markov-Chain Monte-Carlo methods

● Metropolis-coupled MCMC-methods

● Some phylogenetic proposals 

● Reversible jump MCMC 
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Some Phylogenetic Proposal 
Mechanisms

● Branch Lengths

● Sliding Window Proposal

● Multiplier Proposal

● Topologies

● Local Proposal (the one with the bug in the Hastings ratio)

● Extending TBR (Tree Bisection Reconnection) Proposal

● Remember: We need to design proposals for which 

● We either don't need to calculate the Hastings ratio

● Or for which we can calculate it

● That have a 'good' acceptance rate 

→ all sorts of tricks being used, e.g., parsimony-biased topological proposals
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Some Phylogenetic Proposal 
Mechanisms

● Univariate parameters & branch lengths

● Sliding Window Proposal 
● Branch lengths

● Node slider proposal 
● Topologies

● Local Proposal (the one with the bug in the Hastings ratio!)
● Remember: We need to design proposals for which 

● We either don't need to calculate the Hastings ratio
● Or for which we can calculate it
● That have an appropriate acceptance rate 

→ all sorts of tricks being used, e.g., parsimony-biased topological proposals

→ acceptance rate should be around 25% (empirical observation) 

→ for sampling from a multivariate normal distribution it has been formally shown that 
an acceptance rate of 23.4% is optimal
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Sliding Window Proposal

Parameter value range
Current parameter value

Sliding window width δ
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Sliding Window Proposal

Parameter value range

Sliding window width δ

Propose new value at random
within δ



  
126

Sliding Window Proposal

Allowed parameter value range

Sliding window width δ

Notes: 
1. The hastings ratio of this move is 1
2. The edge cases can be handled by back-projection
3. The window size δ can be tuned itself (auto-tuning) to obtain an acceptance rate of ≈ ¼
4. This proposal can be used, e.g., for the α-shape parameter of the Γ function in rate heterogeneity models
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The Node Slider Proposal

1. Pick 2 contiguous branches 
at random

b
1

b
2
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The Node Slider Proposal

1. Pick 2 contiguous branches 
at random
2. Multiply the 2 branches by 
the same random number

b
2

b
1
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The Node Slider Proposal

1. Pick 2 contiguous branches 
at random
2. Multiply the 2 branches by 
the same random number
3. Propose a new branch ratio 
b

1
/b

2
 at random 

b'
1

b'
2
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The Node Slider Proposal

1. Pick 2 contiguous branches 
at random
2. Multiply the 2 branches by 
the same random number
3. Propose a new branch ratio 
b

1
/b

2
 at random 

b'
1

b'
2

The Hastings ratio of this move
is not 1!
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Moving through Tree Space
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Moving through Tree Space

1. Pick 3 contiguous branches 
at random
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Moving through Tree Space

1. Pick 3 contiguous branches 
at random that define 2 
Subtrees X and Y

X

Y
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Moving through Tree Space

1. Pick 3 contiguous branches 
at random that define 2 
Subtrees X and Y
2. shrink or grow selected 3 
branch segment by a random 
amount

X

Y
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Moving through Tree Space

1. Pick 3 contiguous branches 
at random that define 2 
Subtrees X and Y
2. shrink or grow selected 3 
branch segment by a random 
Amount
3. Chose either X or Y at 
random and prune it from the tree 

X

Y
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Moving through Tree Space

1. Pick 3 contiguous branches 
at random that define 2 
Subtrees X and Y
2. shrink or grow selected 3 
branch segment by a random 
Amount
3. Chose either X or Y at random 
And prune it from the tree
4. Re-insert Y at random into
The 3 branch segment 

X

Y
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Moving through Tree Space

X

Y

X

Y

Initial tree t
i Proposed tree t

i+1

Proposed tree: 3 branch lengths changed and one NNI 
(Nearest Neighbor Interchange) move applied
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Moving through Tree Space

X

Y

X

Y

Initial tree t
i Proposed tree t

i+1

The proposed tree has a better likelihood!
Will the proposed tree always be accepted? 

LnL = -3000 LnL = -2900
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Moving through Tree Space

X

Y

X

Y

Initial tree t
i Proposed tree t

i+1

The proposed tree has a better likelihood!
Will the proposed tree always be accepted?
→ think about Priors and Hastings ratio!

LnL = -3000 LnL = -2900
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Outline

● Bayesian statistics

● Monte-Carlo simulation & integration

● Markov-Chain Monte-Carlo methods

● Metropolis-coupled MCMC-methods

● Some phylogenetic proposals 

● Reversible jump MCMC 
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How do we select models using 
MCMC?

● Example: Consider all possible time-reversible nucleotide 
substitution models ranging from Jukes Cantor (JC, 1 rate) to 
the General Time Reversible Model (GTR, 6 rates)

● We will denote rate configurations by strings, e.g.,

● 111111 is the JC model
● ...
● 123456 is the GTR model

● Let me explain this further ...
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Model Strings

111111
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Model Strings

111111
A

C

G

T

A           C         G         T

*

*

*

* λ λ λ

λ λ

λ
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Model Strings

112211
A

C

G

T

A           C         G         T

*

*

*

* λ λ γ

γ λ

λ
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Model Strings

112121
A

C

G

T

A           C         G         T

*

*

*

* λ λ γ

γλ

λ
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Model Strings

112123
A

C

G

T

A           C         G         T

*

*

*

* λ λ γ

γλ

ρ
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How many time-reversible DNA 
models are there? 

● Number of ways a set with n objects can be partitioned into disjoint non-
empty sets

● Example: the set {a,b,c} can be partitioned as follows:

{ {a}, {b}, {c} }

{ {a}, {b, c} }

{ {b}, {a, c} }

{ {c}, {a, b} }

{ {a, b, c} }

● The number of combinations for n (3 in our example) is given by the  so-
called Bell number, for details see 
https://en.wikipedia.org/wiki/Bell_number 

https://en.wikipedia.org/wiki/Bell_number
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The Bell Numbers

● n:= 1 → 1

● n:= 2 → 2

● n:=3 → 5

● n:= 4 → 15

● n:= 5 → 52

● n:= 6 → 203

● n:= 7 → 877

● etc...
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What do we need?

● Apart from our usual suspect parameters (tree topology, branch 
lengths, stationary frequencies, substitution rates, α), we also 
want to integrate over different models now …

● What are the problems we need to solve? 
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What do we need?

● Apart from our usual suspect parameters (tree topology, branch 
lengths, stationary frequencies, substitution rates, α), we also 
want to integrate over different models now …

● What are the problems we need to solve?

● Problem #1:  we need to design proposals for moving 
between different models 

● Problem #2: those models have different numbers of 
parameters, we can not directly compare likelihoods 

● Here we use MCMC to not only sample model parameters, but 
also models 
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Problem #1
Model Proposals

● Any ideas? 
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Problem #1
Model Proposals

● Split move

Chose a set of substitution rates with > 1 member at random

111222 (two-parameter model)

and split it randomly into two rates 

111223 (three-parameter model)
● Merge move

Chose two substitution rate sets at random 

111223

and merge them into one substitution rate set

111222
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Problem #1
Model Proposals

● Split move

Chose a set of substitution rates with > 1 member at random

111222 (two-parameter model)

and split it randomly into two rates 

111223 (three-parameter model)
● Merge move

Chose two substitution rate sets at random 

111223

and merge them into one substitution rate set

111222

Clear to everyone what the 
respective rate matrix looks like?
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Problem #2 
Sampling Different Models

● Use reversible jump MCMC (rjMCMC) to jump between models 
(posterior probability distributions) with different number of 
parameters (posterior distributions with different dimensions)

● The model proposal moves we designed are reversible jump 
moves! 

● Evidently, we need to somehow modify our proposal ratio 
calculation …

● In general terms, the acceptance ratio is calculated as: 

r = likelihood ratio * prior ratio * proposal ratio * Jacobian

A Jacobian defines 
a linear map from Rn → Rm

at point x, if function f(x) 
is differentiable at x
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Problem #2 
Sampling Different Models

● Use reversible jump MCMC (rjMCMC) to jump between models 
(posterior probability distributions) with different number of 
parameters (posterior distributions with different dimensions)

● The model proposal moves we designed are reversible jump 
moves! 

● Evidently, we need to somehow modify our proposal ratio 
calculation …

● In general terms, the acceptance ratio is calculated as: 

r = likelihood ratio * prior ratio * proposal ratio * Jacobian

I will not provide further 
Details; see work by Peter Green 

(1995, 2003) who developed
the rjMCMC  methods
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rjMCMC - summary

● Need to design moves that can jump back and forth between 
models of different dimensions (parameter counts) 

● Need to extend acceptance ratio calculation to account for 
jumps between different models

● The posterior probability of a specific model (e.g., JC or GTR) is 
calculated as the fraction of time (fraction of samples) the 
MCMC chain visited/spent time/generations sampling within that 
model ...
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