
Multiple alignment using hidden Markov models

Seminar Hot Topics in Bioinformatics

Jonas Böer

Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany,
jonas.boeer@student.kit.edu

Abstract. This seminar report covers the paper “Multiple alignment
using hidden Markov models” by Sean R. Eddy. In the introduction, I
describe why it may be desireable to use hidden Markov models (HMMs)
for sequence alignment and put this method into context with other se-
quence alignment methods. I give an introduction on the theory of HMMs
and explain the basic algorithms for solving problems with HMMs. Then
I present the implementation by Eddy for sequence alignment. He re-
ports results that are not yet comparable to state of the art methods,
but still look promising. Finally, I present some further applications for
HMMs in sequence alignment.

1 Introduction

With the progress of sequencing methods, more and more genome and protein se-
quence data becomes available. To work with the data and to extract meaningful
information, it is not only important to examine the sequences individually, but
to compare sequences and learn about their relationships. With this knowledge,
one can for example make assumptions about the shared evolutionary history of
multiple species or predict the structure and the function of not yet described
proteins [4,14].

Biological sequences change over time as evolution progresses. Not only may
characters be replaced, they may also be deleted or new characters may be added
to the sequence. Insertions and deletions lead to sequences with the same ances-
tral history having different lengths. Hence, before two sequences can be com-
pared, an alignment between them must be found. Finding an alignment means
that two sequences are brought to the same length by inserting gap characters
at appropriate places so that characters with the same evolutionary history are
found in the same column [4].

Finding good alignments between multiple sequences is a complex task and
has proven to be NP-complete [17]. Therefore, faster heuristic approaches have
been proposed to tackle this problem. These methods often have already been
explored and implemented in other applications. One promising method origi-
nates from signal processing: Hidden Markov models (HMMs). This statistical
method rose to great success in speech processing due to its robustness concern-
ing pronounciation variations and noise [13].

This robustness can also be exploited for biological sequence analysis. Hidden
Markov models have successfully been used for problems such as modeling DNA
sequencing errors, protein secondary structure prediction as well as multiple
sequence alignment [18].

This seminar report is about this application of hidden Markov models in
multiple sequence alignment, especially based on one of the first papers that
introduced this method, “Multiple alignment using hidden Markov models” by
Sean R. Eddy, published in 1995 [7]. I will first give an introduction to HMM
theory, giving an abstract view of the problems that can be solved with HMMs
and present the basic algorithms to do so. Furthermore, I will describe how they
can be applied to the problem of multiple sequence alignment and present the
results that Eddy obtained with this method. Finally, I will present a number
of methods where the HMM idea has been refined and used in other sequence
alignment methods.

1.1 Related Methods

There have been many attempts to develop heuristic strategies for calculat-
ing a multiple sequence alignment. A few of these shall be presented here:
ClustalW [15] is a software package that uses a guide tree and certain heuris-
tics for weighing sequences, but is now considered deprecated. MUSCLE [8] and
MAFFT [9] are two of today’s most widely used sequence alignment methods
and illustrate the variety of methods that can be employed for multiple sequence
alignment. FSA [3] and PRANK [12], two more recent methods, are included here
because they are widely used today and prominently include HMMs in their algo-
rithms, showing that HMMs can be considered a successful method for sequence
alignment.

ClustalW [15] was considered the state of the art at the time of Eddy’s
paper [7]. It first calculates pairwise alignments and uses these to construct a
guide tree. The alignment is calculated from this guide tree, supported by certain
heuristics: Sequences are weighted so that closely related sequences, representing
redundant information, receive a lower weight and are therefore added earlier
in the construction of the multiple alignment. Also, gap penalties are set de-
pending on selected differences between two sequences. ClustalW has since been
superseded by other methods.

MUSCLE [15] performs a progressive alignment in two stages. At first, a
“draft” tree is calculated for the sequences using the Kimura distances between
the sequences. The Kimura distance describes the evolutionary distance accord-
ing to a substitution model [10]. Then, this tree is progressively refined by split-
ting the tree at one edge, calculating the two sub-trees’ profiles and calculating
their alignment. If this alignment is better than the previous one, it is kept and
further improved, otherwise it is discarded. If the alignment has not yet con-
verged, the tree is split at the next edge and the refinement procedure repeats.

MAFFT [9] uses the Fast Fourier Transform, a mathematical method also
originating from signal analysis. Amino acid sequences are represented by nu-
merical values describing their chemical and physical properties. The correlation

between two sequences is then calculated, an operation which can be signifi-
cantly sped up by using the aforementioned Fourier transform of the sequences’
numerical representation. Homologous segments are then indicated by peaks in
the correlation function graph. Groups of aligned sequences are described by
a weighted average of their sequences, using a weighing function adapted from
ClustalW.

FSA [3] first estimates the probabilities of the characters already being
aligned, unaligned or gapped using a HMM. These probabilities are then sorted
and used in a “sequence annealing” algorithm. Sequence annealing aligns char-
acters one by one, starting with those probably improving the alignment the
most.

PRANK [12] also performs a progressive alignment using a guide tree. No-
tably, this guide tree is treated as a phylogenetic tree and used to infer evolu-
tionary information on the alignments. The alignment is then performed using a
HMM that treats insertions and deletions differently under the assumption that
they have different effects in evolutionary lineages.

2 Hidden Markov models

Hidden Markov models (HMMs) are a tool for the statistical analysis of se-
quences, especially for signal models. Their first widespread use was in speech
recognition, although they have since been used in other fields as well [13].

HMMs offer a mathematical description of a system whose internal state is
not known, only its output. A description of the current state of such a system
would require describing all predecessor states. To calculate the properties of
a state, all possible previous states would have to be also calculated and the
computational complexity would increase exponentially with the number of pre-
decessor states. To avoid this, only a first-order Markov chain is considered: The
state of the system only depends on the previous state and the output only de-
pends on the current states. This reduction of complexity allows the employment
of efficient algorithms [13].

A common example describes an observer who is told the results of coin
throws. The observer knows that there are two biased coins and there is a certain
probability of the coin being switched after a throw, but doesn’t know the biases
or the probability of selecting the other coin. From the observations, the observer
can still train a HMM that describes the results. This model might then be used
to decide if a different observation was produced by the same set of coins. One
possibility for such a model can be seen in figure 1.

When designing a HMM, the most important criteria are the number of states
and the transitions between them. Some HMM architectures allow for transitions
between all states, some only permit transitions in one direction (a “left-to-
right model”), but any combination of states and transitions is possible. The
HMM must be designed appropriately for the application. In the case of speech
recognition, a left-to-right-model might be considered appropriate to describe a
signal whose properties change over time [13].

C1 C20.4 0.7

0.6

0.3P(H) = 0.2
P(T) = 0.8

P(H) = 0.6
P(T) = 0.4

TTHTHHTTTH...

Fig. 1. Simple HMM to describe the observed results of two biased coins without
knowing the coins’ properties or when the other coin is selected.

Formally, a HMM can be described as a tuple M = {S, |aij |, X, bi(x), πi}:

– S are the model’s states.
– |aij | is a matrix describing the transition probabilities.
– X is the output alphabet.
– bi(x) describes the output probability for a letter x in state i.
– πi is the probability to start in state i.

The output alphabet may also be continuous, requiring probability density
functions for the output probabilities. In the context of this paper, the only used
output alphabets are discrete, such as DNA letters or amino acids.

2.1 HMM applications

To analyse and describe data with HMMs, three major problems must be solved.
First of all, what is the probability of an observed sequence according to a given
model? This can be calculated using the forward algorithm and the result can
be used, among others, to decide which model in a collection of HMMs best
describes an observation.

The next problem is to find the most probable state sequence to have emitted
an observation. This state sequence can be used to determine the process which
has caused the observation and is calculated with the Viterbi algorithm. In speech
recognition, this process would be the actual process of saying a word, so this
algorithm gives the user the knowledge what was said according to the model.

Finally, the third problem is to optimize the model, to maximize the proba-
bilities of given observations. The best-known method for HMM training is the
Baum-Welch training algorithm, but Eddy has used it for comparison only. In-
stead, he has trained the HMM with the Viterbi training algorithm. It has worse
convergence properties but iterates much faster [2] and I will only describe this
method.

2.2 The forward algorithm

The forward algorithm [13], as well as the Viterbi algorithm, make use of the
fact that a HMM’s state only depends on the previous state. They both use the
dynamic programming method to efficiently calculate the result.

In formal terms, the forward algorithm calculates the probability of being in
a state i at time t and having emitted the output o1 . . . ot. These probabilities
are named the forward variables. By calculating the sum over the last set of
forward variables, one obtains the probability of the model having emitted the
given sequence.

Initialization: for 1 ≤ i ≤ N
F1(i) = πibi(o1)

Induction: for 2 ≤ t ≤ T, 1 ≤ i ≤ N

Ft(i) =

 N∑
j=1

Ft−1(j)aji

 bi(ot)
Termination:

P (O) =

N∑
i=1

FT (i)

2.3 The Viterbi algorithm

The Viterbi algorithm [13] works similarly to the forward algorithm. As the goal
is to get the most likely path through the HMM for a given observation, only
the most likely transition from a previous state to the current one is important.
Therefore, the summation from the forward algorithm is replaced by a search
for the maximum value and a backwards pointer to the most likely predecessor
state is saved.

Initialization: for 1 ≤ i ≤ N
V1(i) = πibi(o1)

Induction: for 2 ≤ t ≤ T, 1 ≤ i ≤ N
Vt(i) = max

1≤j≤N
{Vt−1(j)aijbi(ot)}

Wt(i) = arg max
1≤j≤N

{Vt−1(j)aij}

From the most probable finish state arg max{VT (i)}, the most likely path
through the model and therefore the most likely state sequence can then be
constructed by following the backwards pointers WT . . .W2.

2.4 Viterbi training

As mentioned before, the Baum-Welch training is relatively slow, as it attempts
to optimize all possible paths through an HMM for a given observation. In

contrast, the Viterbi training algorithm [2] only attempts to optimize the most
likely path associated with a sequence, sacrificing accuracy for speed.

The Viterbi training algorithm requires a representation of the HMM’s pa-
rameters as normalized exponentials. This representation leads to an automati-
cal normalization of the parameters and ensures that transmission and emission
probabilites never become zero. The parameters to be modified are now vix for
the emission probabilities and wij for the transmission probabilities.

bi(x) =
evix∑

x†∈X
evix†

aij =
ewij∑

j†∈S
ewij†

With this representation and a given path through the model, the actual
training can be performed along the following equations:

∆vix = η(Eix − bi(x))

with Eix =

{
1 if x has been emitted in state i

0 otherwise

and

∆wij = η(Aij − aij)

with Aix =

{
1 if the transition from i to j was used

0 otherwise

While Baum-Welch is an Expectation-Maximization algorithm, the Viterbi
training is more similar to a gradient descent algorithm. Its learning rate is con-
trolled with the parameter η, although Eddy makes no mention of the parameter
values he used for training [7].

3 Multiple alignment with HMMs

3.1 Adapting HMMs for Bioinformatics

To use HMMs in biological sequence analysis, Eddy uses a HMM architecture
that employs designated states for matches, insertions and deletions. While
match states and insert states emit symbols as expected, delete states have
the special characteristic that they don’t emit a symbol at all and can be used
to skip consensus positions in the profile. He also adds designated states signi-
fying the beginning and the end of the sequence, also without any output. The
aforementioned algorithms can be used for this architecture with only minor
modifications:

The HMM is forced to terminate in a designated end state. This can be done
in the Viterbi algorithm by not selecting the most likely state at the end but the
designated end state and backtracking along the backwards pointers as usual.
Delete states can be treated like other states with an emission probability bi(ε) =
1, ε signifying “no output” [11]. There are also implementations of the algorithms
where the delete states’ probabilities are calculated from the current state so that
the algorithms have to perform multiple iterations until the probabilities have
converged [2].

The common way to visualize these HMMs is by representing match states
with squares, insert states with diamonds, and delete states (including the be-
ginning and end states as “mute” states) with circles [6]. An example for such a
HMM structure can be seen in figure 2.

HMM:

(begin) (end)

M1 M2 M3

D1 D2 D3

I0 I1 I2 I3

Fig. 2. A typical HMM structure for multiple alignment (adapted from [7])

3.2 Training HMMs with simulated annealing

To avoid running into local optima, Eddy extends the HMM methods with the
simulated annealing technique. Simulated annealing uses a simulated tempera-
ture factor kT , also named the Boltzmann temperature. The higher kT is, the
more randomized the alignments are: kT = ∞ results in all alignments being
sampled with the same probability, kT = 0 means that the most likely alignment
is always selected.

With simulated annealing, the aim is to probabilistically sample an alignment
Q of a sequence O, given a model M and the Boltzmann temperature kT :

P (Q) =
P (Q|O,M)

1
kT∑

all
Q†
P (Q†, O|M)

1
kT

To implement simulated annealing in the forward algorithm, the model’s
parameters are replaced with exponentiated parameters. The parameters used

in this variation are π̂i = π
1

kT
i , âij = a

1
kT
ij and b̂j(x) = bj(x)

1
kT so that they

include the current temperature in the algorithm.

Initialization: for 1 ≤ i ≤ N

F1(i) = π̂ib̂i(o1)

Induction: for 2 ≤ t ≤ T, 1 ≤ i ≤ N

Ft(i) =

 N∑
j=1

Ft−1(j)âji

 b̂i(ot)
Termination:

Z =

N∑
i=1

FT (i)

Z now describes the probability of the observation according to the model
and the current temperature. As Eddy wants to use the Viterbi training method,
he needs a path along which he can optimize the model. With the exponentiated
forward variables, a probabilistic traceback can be performed: In contrast to the
Viterbi algorithm’s backwards pointers, he selects one of the possible predecessor
states according to their probability of being the actual predecessor state:

Initialization:

P (qT) =
FT (qT)

Z
Induction: forT ≥ t ≥ 2

P (qt−1|qt) =
Ft−1(qt−1)âqt−1,qt∑N

i=1 Ft−1(i)âi,qt

The path which describes the suboptimal alignment is then reused to further
improve the model with the Viterbi training method to increase the likelihood of
the model for this path. As the training starts with a high temperature kT , the
alignments are very randomized at first, with well-determined motifs freezing
first. The author expresses his hope that the simulated annealing alleviate the
problem of running into local optima.

For simulated annealing, Eddy starts with a kT value of 5 and reduced it
by 5% at each iteration. If the model didn’t change for more than an arbitrary
threshold after an iteration, the algorithm is assumed to have converged and
the calculation is stopped. On the other hand, if reducing kT brought its value
below 0.1, they switched to the standard Viterbi algorithm and Viterbi training,
effectively setting kT = 0 to avoid problems with floating point precision for
very small numbers.

The resulting HMM is called consensus HMM [7] or, especially when it is
used to describe the profile of a number of sequences, a profile HMM [6]. An
example for a HMM trained with a simple dataset is given in figure 3.

multiple alignment:

consensus:

profile:

HMM:

–

W

–

–

–

A

A

V

A

A

A

D

E

–

D

E

D/E

–

–

–

T

–

C

C

C

C

C

C

A

C

D

E...

0.74

0.01

0.03

0.03

A

C

D

E...

0.01

0.01

0.41

0.44

A

C

D

E...

0.01

0.92

0.01

0.01

X 0.05 X 0.05 X 0.05 X 0.05

(begin) (end)

M1 M2 M3

D1 D2 D3

I0 I1 I2 I3

Fig. 3. The HMM from figure 2 trained with some sequences. Higher transition prob-
abilities are indicated by bolder arrows. (adapted from [7])

4 HMM evaluation

Eddy primarily aims to address the following questions:

– Do the standard HMM training methods run into local optima?
– Does simulated annealing alleviate this problem?
– Is there a correlation between mathematically good optima (higher HMM

scores) and good alignments?
– How well do the HMM methods work compared to the state of the art?

He developed a software named HMMER employing the methods described
previously. To test its performance, he used real-world data from ten protein
families: Alpha amylase, (multi) EF hand, cytochrome C, EGF domain, globin,
homeodomain, Ig light chain V, insulin, protease inhibitors and kringle modules.
As ground truth data, trusted alignments by Šali and Overington [16] were used,
although the author advises that these do not neccessarily reflect the absolute
truth and may not reach the quality of an expert’s manual alignment.

The quality of a HMM’s parameter estimation depends on the amount of
training data. As the protein families from the test data only consist of 2 to

23 sequences, additional homologues from the SWISS-PROT database [1] were
added to the test data. Every protein familiy was thusly extended to 100 se-
quences.

The ten test sets were aligned with different methods to be able to evaluate
HMMER’s performance. The alignment methods were:

– HMM training with the Viterbi training algorithm (“Vit” in table 1 and the
following figures)

– HMM training with Baum-Welch expectation maximization (“B-W”)
– HMM training with simulated annealing as described in section 3 (“SA”)
– “Best of 10” simulated annealing runs according to the HMM score (“SA10”)
– ClustalW, the state of the art software at the time (“CW”)

Two measures were calculated from the resulting alignment: The HMM log-
odds score as the HMM score and the alignment accuracy. For HMM scoring,
a HMM is constructed from the resulting alignment and the combined log-odds
score for the sequences in its family was calculated. For a better comparison, its
representation in bits (log base 2) is used by Eddy. To make the results from
ClustalW comparable, such an HMM is also constructed from the ClustalW
alignment and its alignment is scored with this model.

The alignment accuracy compared to the trusted alignment is calculated
by counting the number of correctly aligned symbol pairs divided by the total
number of aligned symbol pairs in the trusted alignment. Eddy also tried to
compare only a number of key columns, but dismissed the approach because
the results correlated with the overall results and because he considered the key
column selection process to be arbitrary.

Family Vit B-W SA SA10 CW

EGF domain 53.07 54.96 55.46 57.17 47.36
83% 74% 80% 88% 75%

globin 203.98 237.33 250.82 255.93 253.31
38% 69% 81% 75% 93%

homeodomain 132.74 131.71 133.58 134.31 133.91
68% 91% 50% 61% 96%

Table 1. Selected alignment HMM scores (first line) and alignment accuracies (second
line) (from [7])

The results from three of the protein families shall be discussed in more
detail: The EGF domain, the globins and the homeodomain. There appear to be
local optimum problems, especially with the näıve Viterbi training algorithm.
It often leads to low alignment and likelihood scores. Baum-Welch training has
significantly less problems with local optima, but still doesn’t reach the alignment
quality ClustalW offers. One family where this can be seen well are the globins,
visualized in figure 4.

0%
10%
20%

40%
30%

50%
60%
70%
80%
90%
100%

0

50

100

150

200

250

Vit B-W SA SA10 CW
alignment accuracylog-odds score

globins

Fig. 4. The scores of the globin family

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

20

40

60

80

100

120

140

Vit B-W SA SA10 CW
alignment accuracylog-odds score

homeodomain

Fig. 5. The scores of the homeodomain family

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

10

20

30

40

50

60

Vit B-W SA SA10 CW
alignment accuracylog-odds score

EGF domain

Fig. 6. The scores of the EGF family

Better HMM scores do correspond with a better alignment quality, although
this is not always the case, see the results from the homeodomain proteins (fig-
ure 5). Eddy proposes that a better correspondence between the two measures
might be reached by including prior biological information in the HMMs, such
as amino acid substitution probabilities.

The author emphasizes that the results from the EGF domain and the EF
hand are significantly better with HMMs than the ClustalW results (figure 6)
These families have the largest amount of insertions and deletions in the set. The
authors argue that HMMs have a consistent theory for insertions and deletions
and therefore are well suited to deal with this family.

Still, in many cases ClustalW reaches the best results. Eddy assumes that this
is because ClustalW was designed with careful heuristics, e.g. weighing certain
sequences differently to avoid a bias towards dominant subfamilies.

5 Applications and extensions

5.1 Searching with HMMs

One of the most common applications for HMMs in bioinformatics is searching
for homologous sequences. The profile HMM, describing the profile of a group
of sequences, can be used to score the similarity of other sequences. This can
also be done with the implementations of the Viterbi and the forward algorithm
given in this paper.

Durbin et al. advise that the usual log-likelihood score should not be used
in this case, as it depends on the sequence length. The log-odds score does not
present this problem and returns a lower variance of the non-matches’ score. The
algorithms can be modified to directly output the log-odds score [4].

(begin) (end)

Fig. 7. HMM structure for a local alignment search (adapted from [4])

A local alignment, which allows only a substring of the query to match, can
also be implemented with the given HMM structures. The HMM simply has to

be extended with two additional transition states that allow transitions from or
to every match state (figure 7) [4].

Fig. 8. Left: “Plan 7” HMM structure for HMMER2, Right: Null model for log-odds
scoring (adapted from [5])

Searching with HMMs may also require more sophisticated HMM architec-
tures. Eddy constructed the “Plan 7” HMM architecture for version 2 of the
HMMER software (figure 8, left). Plan 7 does not allow for transitions from
insert to delete states and vice versa. To ensure that at least one match state
is visited at every cycle through the model during the search, the first and last
delete states (displayed in grey) are removed after training. HMMer2 also uses a
“null model” (figure 8, right) as a reference to calculate log-odds scores, with the
single insert state’s emission probabilities being the average amino acid frequen-
cies according to SWISSPROT34 or a uniform distribution for nucleotides [5].

5.2 Pair HMMs

Fig. 9. Pair HMM (from [18]

Pair HMMs are an extension of HMMs that emit a pairwise alignment in-
stead of a single sequence. They can be used to efficiently align two sequences

including insertions and deletions [4]. This is especially useful when trying to
align non-coding DNA sequences. Pair HMMs are especially used in algorithms
that perform a progressive alignment, such as PRANK [12]. They also give an
estimation of the posterior probability of each aligned colum which can be used
as an indicator for the alignment quality at this position [18].

5.3 Context-sensitive HMMs

Fig. 10. Context-sensitive HMM (from [18]

The fact that HMMs don’t have a “memory” is also a weakness. One ap-
plication where access to information on previous states can be useful is RNA
sequence alignment: The secondary structure of RNA molecules is determined
by matching parts of the RNA sequence. Yoon et al. have developed the concept
of context-sensitive HMMs (csHMMs) [18] These models are extended with a
functionality similar to a pushdown automaton, giving certain match states the
ability to either push to a stack or pop the topmost element from the stack. This
simple memory enables the csHMMs to incorporate structural information in the
matching. Figure 10 shows an example that might be used for RNA matching.

6 Conclusion

In 1995, HMMs were a promising method for sequence alignment, although they
could not always compete with the state of the art. Still, this relatively unrefined
approach worked well enough to inspire more research.

Today, methods that exclusively use HMMs are relatively rare, but HMMs
are used as a part of many methods such as FSA or PRANK. Additionally, the
theory of HMMs is still under development to extend their capabilities, making
HMMs a versatile tool for multiple or pairwise sequence alignment.

One can expect that HMMs will continue to be an integral part of multiple
sequence alignment as well as other fields of bioinformatics.

References

1. Bairoch, A., Boeckmann, B.: The swiss-prot protein sequence data bank, recent
developments. Nucleic acids research 21(13), 3093 (1993)

2. Baldi, P., Brunak, S.: Bioinformatics: the machine learning approach. MIT press
(2001)

3. Bradley, R.K., Roberts, A., Smoot, M., Juvekar, S., Do, J., Dewey, C., Holmes, I.,
Pachter, L.: Fast statistical alignment. PLoS Comput Biol 5(5), e1000392 (2009)

4. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological sequence analysis:
probabilistic models of proteins and nucleic acids. Cambridge university press
(1998)

5. Eddy, S.R.: Hmmer user’s guide (1998), http://www.csb.yale.edu/userguides/
seq/hmmer/docs/node11.html

6. Eddy, S.R.: Profile hidden markov models. Bioinformatics 14(9), 755–763 (1998)
7. Eddy, S.R., et al.: Multiple alignment using hidden markov models. In: Ismb. vol. 3,

pp. 114–120 (1995)
8. Edgar, R.C.: Muscle: multiple sequence alignment with high accuracy and high

throughput. Nucleic acids research 32(5), 1792–1797 (2004)
9. Katoh, K., Misawa, K., Kuma, K.i., Miyata, T.: Mafft: a novel method for rapid

multiple sequence alignment based on fast fourier transform. Nucleic acids research
30(14), 3059–3066 (2002)

10. Kimura, M.: A simple method for estimating evolutionary rates of base substitu-
tions through comparative studies of nucleotide sequences. Journal of molecular
evolution 16(2), 111–120 (1980)

11. Krogh, A., Brown, M., Mian, I.S., Sjölander, K., Haussler, D.: Hidden markov
models in computational biology: Applications to protein modeling. Journal of
molecular biology 235(5), 1501–1531 (1994)

12. Löytynoja, A., Goldman, N.: An algorithm for progressive multiple alignment of
sequences with insertions. Proceedings of the National academy of sciences of the
United States of America 102(30), 10557–10562 (2005)

13. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

14. Russell, D.J.: Multiple sequence alignment methods. Springer (2014)
15. Thompson, J.D., Higgins, D.G., Gibson, T.J.: Clustal w: improving the sensitivity

of progressive multiple sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix choice. Nucleic acids research 22(22),
4673–4680 (1994)

16. Šali, A., Overington, J.P.: Derivation of rules for comparative protein modeling
from a database of protein structure alignments. Protein Science 3(9), 1582–1596
(1994)

17. Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. Journal
of computational biology 1(4), 337–348 (1994)

18. Yoon, B.J.: Hidden markov models and their applications in biological sequence
analysis. Current genomics 10(6), 402–415 (2009)

http://www.csb.yale.edu/userguides/seq/hmmer/docs/node11.html
http://www.csb.yale.edu/userguides/seq/hmmer/docs/node11.html

	Multiple alignment using hidden Markov models
	1 Introduction
	2 Hidden Markov models
	3 Multiple alignment with HMMs
	4 HMM evaluation
	5 Applications and extensions
	6 Conclusion

