

Main Seminar
Hot Topics in Bioinformatics

Alexandros Stamatakis

Now

● How to give a scientific presentation
● How to write a technical report/scientific paper

Scientific Presentations

● This is my personal view, based on over 120 talks I
have given

● At CS conferences: typically 25 minutes + 5 minutes
questions

● Timing
● Practice your talk beforehand
● Usually 1.5-2 minutes per slide
● Keep in mind, when presenting one usually talks faster than

during the rehearsal
● Use SW tools for timing, e.g., sliding time bars
● Use a spell-checker for the slides!

The audience

● Giving talks gets easier and easier the more talks you give

● Try to imagine what kind of audience you might be expecting

● What may or may they not know about the problem at hand?

● What terms & acronyms can be assumed to be standard knowledge?

● What terms & acronyms are too subject-specific?

● A talk about the same subject will be very different if you are talking to

● Theoretical computer scientists

● HPC engineers

● Bioinformaticians

● Evolutionary Biologists

● You will have to explain different things/concepts in more detail!

Slide layout

● Keep slides simple
● Use a spell checker for the slides
● Decide if you want to use American or British English
● Avoid numbering of type 10/50, 11/50 → audience will think: “...

another 39 boring slides to go”
● Reduce text to the absolute minimum!
● Avoid busy slides including text & graphs & tables

→ if you need a complex slide use layers, i.e., first show text,
then add graph, then add a table

→ direct the attention of your audience
● Avoid tables if possible → use intuitive graphical representations

Structure

● Provide an outline for your talk

→ re-use it at the beginning of each section

● Structure

● State & Motivate the problem

– Why is it interesting?
– Why is it important?

● Own contribution: very brief

– What did you do/What did you contribute?
– This is often very fuzzy, I have attended many talks where it was not

clear for a long time what the contribution of the authors actually was
– Throughout the talk, make it very clear:

(i) what is prior knowledge

(ii) what you did contribute

Structure

● Outline

● Intro & Motivation

● Own Contribution

● Abstract, but more detailed problem description

→ omit unnecessary details

● Describe your solution/contribution

● Experimental Results

→ experimental setup

→ HW & datasets used

→ results (if possible no tables, intuitive graphs)

→ comparison with competing approaches
● Conclusions & Future Work

● Acknowledgements: funding agencies, people who have helped you

Reporting Results

● e.g., parallel speedups

→ don't show execution time over processor plots

→ show speedups, much easier to interpret

● Showing graphs

→ label the x and y axis!

→ before discussing the graphs, say what the x and y
represent!

→ don't show more than one graph per slide!

Acronyms

● I can't stand it when people use acronyms in
texts without introducing them

● There are very few acronyms that are known to
everybody
● MPI is one of these …
● But only at a HPC conference

● Don't use acronyms in slides
● People can not remember their meaning in

such a short time

An example presentation

● Work on barriers
● Presented at IEEE Cluster in 2010
● I didn't have much time to prepare the slides
● By far not perfect
● I have commented the slides

● Things I liked
● Things I didn't like

Assessment of Barrier Implementations for Fine-
Grain Parallel Regions on Current Multi-core

Architectures

 Simon A. Berger and Alexandros Stamatakis

The Exelixis Lab
Bioinformatics Unit

Department of Computer Science
Technical University of Munich

stamatak@cs.tum.edu
http://wwwkramer.in.tum.de/exelixis

The title

The Authors
Who is giving the talk?

Affiliation and
Contact details

Outline

● Motivation
● Type of parallel regions
● Barriers
● Test Applications
● Results
● Conclusions

Motivation

● Little is known about efficient barrier implementations on multi-cores using
Pthreads and OpenMP

● Need for assessment on current multi-core architectures

● Focus on applications with large number of fine-grain parallel regions

→ applications where barrier performance is an issue

● Background: Bioinformatics application for reconstruction of evolutionary
trees from DNA data

There's a bit too much text
On this slide + it's badly formatted

Questions

● Does barrier efficiency depend on
● Specific multi-core architecture?
● Memory and Cache utilization and access

behavior of the application at hand?
● Best barrier implementation for Pthreads?
● Pthreads implementation required for non-

expert users!

Sentence too long!

That's actually the motivation for
Using Pthreads

Goals

● Devise efficient barrier implementation

● Provide for barrier with deterministic reduction implementation

● Reductions a + b + c + d must always be
conducted in the same order, e.g.:
– (a + b) + (c + d)
– A reduction on the same numerical values must yield

exactly the same result!
● Not necessarily the case with OpenMP and MPI

Sentence maybe too long!
Not well-formatted

Outline

● Motivation
● Type of parallel regions
● Barriers
● Test Applications
● Results
● Conclusions

Thread Sync:
Fork-Join Model

Sequential part

Master thread The followings slides are rather nice
We build up what we need step by step

Thread Sync:
 Fork-Join Model

parallel part

for(i=0; i < 1000; i++)
 a[i] = a[i] * 2;

Maybe add this in the next slide

Thread Sync:
Fork-Join Model

sequential part: join

for(i=0; i < 1000; i++)
 a[i] = a[i] * 2;

Thread Sync:
Barrier-based

Trigger

Barrier

Barrier

0 1 2 3

for(i=0; i < 1000; i++)
 a[i] = a[i] * 2;

for(i=0; i < 1000; i++)
 a[i] = a[i] * 2;

for(i=0; i < 1000; i++)
 a[i] = a[i] * 2;

Barrier

Trigger

Trigger

Should have added this on the
next slide

Thread Sync:
Barrier-based

Trigger

Barrier

Barrier

0 1 2 3

for(i=0; i < 1000; i++)
 a[i] = a[i] * 2;

for(i=0; i < 1000; i++)
 a[i] = a[i] * 2;

for(i=0; i < 1000; i++)
 a[i] = a[i] * 2;

Barrier

Trigger

Trigger

Busy wait

Busy wait

Thread Sync:
Barrier-based

Trigger

Barrier

Barrier

0 1 2 3

for(i=0; i < 1000; i++)
 a[i] = a[i] * 2;

for(i=0; i < 1000; i++)
 a[i] = a[i] * 2;

for(i=0; i < 1000; i++)
 a[i] = a[i] * 2;

Barrier

Trigger

Trigger

Busy wait

Busy wait

Trigger via shared
variable

Outline

● Motivation
● Type of parallel regions
● Barriers
● Test Applications
● Results
● Conclusions

Here I need to say that now I am
Introducing the barriers we tested!

Master-Threads

volatile int jobCycle = 0;

void masterBarrier(int tid, int n)
{
 jobCycle = !jobCycle;
 executeWork(tid, n);
 masterSync(tid, n);
}

Pasted in, badly formatted C code
Don't do this ;-)

Use pseudocode!

Worker-Thread

void workerThread(int tid, int n)
{
 int mycycle = 0;
 while(1)
 {
 while(myCycle == jobCycle);
 myCycle = jobCycle;
 executeWork(tid, n);
 workerSync(tid, n);
 }
}

Lock-Free

void workerSync(int tid, int n)
{
 barrierBuffer[tid] = 1;
}

void masterSync(int tid, int n)
{
 int i, sum;
 do
 {
 for(i = 1, sum = 1; i < n; i++)
 sum += barrierBuffer[i];
 }
 while(sum < n);
}

Lock-Free Padded

void workerSync(int tid, int n)
{
 barrierBuffer[tid * padding] = 1;
}

void masterSync(int tid, int n)
{
 int i, sum;
 do
 {
 for(i = 1, sum = 1; i < n; i++)
 sum += barrierBuffer[i * padding];
 }
 while(sum < n);
}

I should have provided an overview
of the barrier implementations we
Tested at the beginning of this part!

Recursive Lock-Free

Thread 1

Thread 2

Thread 3

Thread 0

Thread 2Thread 0

Thread 0

That's a slide I like
One could have animated it though!

Recursive Lock-Free Padded

Thread 1

Thread 2

Thread 3

Thread 0

Thread 2Thread 0

Thread 0

Intrinsic Atomic Increment

volatile int counter = 0;

void workerSync(int tid, int n)
{

__sync_fetch_and_add(&counter, 1);
}

void masterSync(int tid, int n)
{

int workers = n - 1;

while(counter != workers);
counter = 0;

}

Lock-Based

volatile int counter = 0;

void workerSync(int tid, int n)
{

pthread_mutex_lock(&mutexCounter);
counter++;
pthread_mutex_unlock(&mutexCounter);

}

void masterSync(int tid, int n)
{

int workers = n - 1;

while(counter != workers);
counter = 0;

}

Reduction Flavors

● Recursive “classic reduction”

Thread 1

Thread 2

Thread 3

Thread 0

Thread 2Thread 0

Thread 0

6

1 5

0 1 2 3

+

+

+

Badly formatted!

Flat Reduction

● Threads store partial sums in shared array
● Master conducts reduction alone after barrier
● Tested with and without SSE3 vectorization
● Assumes that only one or two simple

reductions are computed, e.g., reduction
function is -,*,+

Too much text
I could have added a graphical representation

here as well

Outline

● Motivation
● Type of parallel regions
● Barriers
● Test Applications
● Results
● Conclusions

Test Applications

● Synthetic Benchmarks
● Without workload
● With workload

● Real Benchmark
● RAxML Bioinformatics application

I don't say what I mean by workload
here!

Synthetic Benchmarks

● With workload

● 3 arrays v1, v2, v3 of length M
● compute “v3[i] = v1[i] * v2[i]” N times with intermittent

barriers
● Without workload

● Set M to zero :-)
● Variables N and M are set at compile time

● Use of mmap() to control array allocation

● Cache utilization controlled by M

Badly formatted!

Real Workload

● Pthreads parallelization of RAxML

● RAxML: widely used tool for inference of evolutionary trees from DNA data

● Fine-grain production-level Pthreads parallelization

● Floating-point and memory intensive

● Considered subset of the phylogenetic likelihood function:

● requires largest amount of sync

● Two reductions on 1st and 2nd derivative of the likelihood (Newton-
Raphson procedure)

Too much & partially unnecessary text

Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root I like the following slides, but this may
go too fast for people who do not

Know anything about phylogenetics!

This should pop up on a second slide

Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

This operation uses ≥ 90% of total
execution time !

Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

This operation uses ≥ 90% of total
execution time !
 simple fine-grained parallelization

Loop Level Parallelism

P

Q
R

virtual root

Loop Level Parallelism

P

Q
R

virtual root

Loop Level Parallelism

P

Q
R

virtual root

Branch Length Optimization

starting branch

Branch Length Optimization

starting branch

Essentially we place a virtual
root into this branch here

Probably not necessary!

Branch Length Optimization

starting branch

Branch Length Optimization

starting branch

Branch Length Optimization

starting branch

Branch Length Optimization

starting branch

Branch Length Optimization

starting branch

Branch Length Optimization

starting branch

Branch Length Optimization

starting branch

iterate until
convergence

Branch Length Optimization

starting branch

iterate until
convergence

Two representative test datasets, approx 10
seconds run-time:

404 sequences: 194,000 barriers
1481 sequences 739,000 barriers

Outline

● Motivation
● Type of parallel regions
● Barriers
● Test Applications
● Results
● Conclusions

Test Platforms

● 2-core Intel Core2 Duo
● 4-core Intel Core 2 Quad
● 4-core Intel Core i5
● 8-core Intel Nehalem
● 16-core AMD Barcelona
● 32-core AMD Sun x4600
● 24-core AMD Sun x4440

The list looks ugly! We need the details here.
I should have sub-divided it
into Intel and AMD systems!

Synthetic without workload
This is something you should never do ;-)
→ represent numerical results graphically!

Synthetic with workload
This is something you shouldn't do ;-)

RAxML 404 sequences

RAxML 1481 Sequences

Outline

● Motivation
● Type of parallel regions
● Barriers
● Test Applications
● Results
● Conclusions

Conclusions

● Intrinsic atomic increment does not yield
optimal performance

● Performance of different barrier flavors
depends on cache utilization of application

● Lock-free barriers and SSE3-based flat
reductions appear to work best across all
platforms

Again: too much text!

Acknowledgments

Michael Ott, TUM

Stephen Smith, Brown/TUM
Nikos Alachiotis, TUM

Andre Aberer,
TUM

Simon Berger, TUM

Wayne Pfeiffer, SDSC

Nick Pattengale, Sandia
Denis Krompaß, TUM

Christian v. Mering & Manuel Stark
University of Zürich

Fernando Izquierdo,
TUM

Thank you for your Attention !

Zakros, Crete, Greece, September 2008

Summary

● This was an “okay” presentation, but
● Too much text
● Sometimes lacking a clearer structure!
● Could have included more pictures
● Result section

→ copied & pasted tables from paper

→ don't do this

Today

● How to give a scientific presentation
● How to write a technical report/scientific

paper

General structure

● Meaningful (catchy?) Title, catchy title, for instance:
“Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for
inferring SNP phylogenies”

● Authors and affiliations
● Abstract

● Motivation
● Problem Statement
● Own Contribution
● Results

● Introduction and Motivation

General structure

● Related work (can also be moved further to the end)

● Own contribution, e.g.,

● Algorithm

● Parallelization

● Model

● Results

● Experimental setup

– How were test datasets generated?

– What kind of HW was used?

– How can the experiments be reproduced?

→ reproducible science

→ make SW and datasets available for download!

→ Archive the data for 10 years!

→ Archive data when the paper is accepted for publication!

General structure

● Results
● Experimental Setup

– Datasets used
– HW platforms used
– Compilers used

● Results
– Graphs, speedup plots, tables
– Comparison to competing SW, algorithms etc

● Conclusion and Future Work
● Acknowledgements

● Funding agencies
● Colleagues who helped

Biology Papers

● The structure is a bit different
● Abstract
● Introduction
● Materials & Methods (e.g., field work, sequencing,

bioinformatics analysis, etc.)
● Results
● Discussion ← this is longer and more important than

in CS, because results are typically more fuzzy
● Acknowledgements

Writing papers

● Be exact & precise
● Be exact & precise
● Be exact & precise
● Omit unnecessary information
● Don't be wordy, be concise
● Use short sentences!
● Avoid colloquial expressions!
● Avoid qualitative words: much, little, good, few
● Quantify things!
● Don't say “in most cases our code performed well” → “in 65% of the

cases our code showed an accuracy improvement exceeding 5%
over ...”

Writing papers

● In engineering-style papers

● Always provide a rationale for design choices!

Instead of “We use an array representation with binary
search for storing and retrieving elements.” → “We use an
array representation with binary search for storing and
retrieving elements, because binary search trees performed
worse for the problem at hand.”

● In English: Sentences are generally much shorter

● Don't show that you are educated (as sometimes done in
German) by writing long sentences using elaborate vocabulary

● Keep Things Simple!

Writing papers

● If your English is generally mediocre don't build
in “100 Dollar words” you looked up in the
dictionary→ this just sounds ridiculous

● Occasional language jokes are allowed, e.g.,
using phrases such as “Based on the
prolegomena”

● Use a spell checker
● Use a spell checker
● Use a spell checker

Writing papers

● In Latex add a ~ after . in the middle of a phrase
● Properly introduce acronyms
● Say what acronyms mean the first time you use

them
● Use/introduce acronyms consistently to make the

text shorter
● E.g., multiple sequence alignment → MSA
● If you use a long term frequently “phylogenetic

placement of query sequences” find a shorter one
“henceforth, denoted as 'query placement' “

Writing papers

● Don't use qualitative terms like “very, highly,
significantly (in the non-statistical sense), much,
good, bad” quantify everything as much as you can

● I personally don't like the passive form, that is, write
“We implemented a cool software” instead of “a cool
software has been implemented”

● “cool” shouldn't be used of course
● This also makes it much clearer what your own

contribution was and what has be done by
others/what is prior knowledge & work

Writing papers

● Before handing in your reports/papers use an academic
“writing checker” that catches the most common
mistakes!

● Academic-Writing-Check:
https://github.com/devd/Academic-Writing-Check

● Make sure you know what you are doing with Latex!

● Please read these pages!
● http://www.ece.ucdavis.edu/~jowens/commonerrors.html

● http://www.cs.columbia.edu/~hgs/etc/writing-bugs.html

● http://www.you-can-teach-writing.com/grammar_websites.html

● Attend a scientific writing course → it's worth it!

https://github.com/devd/Academic-Writing-Check
http://www.ece.ucdavis.edu/~jowens/commonerrors.html
http://www.cs.columbia.edu/~hgs/etc/writing-bugs.html
http://www.you-can-teach-writing.com/grammar_websites.html

Google Scholar

● Attention when importing .bib entries from Google
Scholar

● Don't just copy & paste
● You need to check the entries

● All data available?
● Correct Journal/Conference Abbreviations
● Entries missing?

● I will check the reports for correct bibliography data!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Loop Level Parallelism
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Thank you for your Attention !
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

